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Abstract10

Urban flood modeling depends heavily on the quality of Digital Elevation Models (DEMs).11

However, accurate, high-resolution DEMs are often expensive and not widely available,12

particularly in data-limited regions. Consequently, researchers frequently rely on Global13

Digital Elevation Models (GDEMs), which suffer from vertical biases and limited spa-14

tial resolution. This limitation is especially critical in urban settings, where detailed ter-15

rain features are essential for accurate flood prediction. In this study, we introduce a novel16

methodology that leverages Convolutional Neural Network (CNN) architecture (U-Net)17

and utilizes GDEMs and other publicly available datasets (e.g., Landsat-8, Sentinel-1,18

and Sentinel-2) to produce an enhanced DEM with a 5-meter spatial resolution. Using19

USGS high-resolution DEMs as a reference, our results demonstrate that our method20

is able to generate DEMs with significantly lower vertical biases (82.1% lower RMSE and21

87.8% lower MAE) compared to GDEMs. Additionally, the model produces a more de-22

tailed representation of urban features that are essential for flood pattern analysis. By23

applying this improved DEM within a flood simulation model, we show that the Prob-24

ability of Detection increases by 12% increase and the False Alarm Ratio decreases by25

13% compared to GDEMs. These findings underscore the potential of using deep learn-26

ing and multi-source data to improve DEM quality for more accurate urban flood mod-27

eling and management in data-limited regions.28

Keywords: Digital Elevation Models; Deep Learning; Convolutional Neural Network;29

Urban Flood Modeling; Remote Imagery Data; Downscaling.30
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1 Introduction31

Flood events pose a significant global challenge and can have major, far-reaching32

social, economic, and environmental impacts in both developed and developing countries33

(F. Li et al., 2019). A recent study estimates that approximately 1.81 billion people, or34

23% of the global population, are directly exposed to significant flood risks, with approx-35

imately $9.8 trillion of economic activity located in areas at significant flood risk, equiv-36

alent to about 12% of global GDP in 2020 (Rentschler et al., 2022). The increasing fre-37

quency and severity of floods are attributed to a combination of factors, including more38

intense storms, urban development, dense population, reduced soil infiltration capacity,39

and the accelerating pace of climate change (Fereshtehpour & Karamouz, 2018; Pasquier40

et al., 2019; O’Donnell & Thorne, 2020). With an estimated 68% of the global popula-41

tion expected to reside in cities by 2050 (UN, 2019), many of which are located in low-42

lying, flood-prone regions, the growing complexity and risk of flood events underscore43

the critical need for more accurate flood mapping and impact estimation in urban ar-44

eas (Ford et al., 2019; Y. Liu et al., 2021).45

Digital elevation models (DEMs) are essential tools for flood modeling, providing46

the critical topographic data needed to accurately simulate water flow and flood pattern.47

Therefore, the quality of DEMs directly influences the accuracy of flood model outputs,48

particularly in delineating inundation extents (Courty et al., 2019; McClean et al., 2020;49

Shastry & Durand, 2020; Zhang et al., 2019; Zandsalimi et al., 2024). DEMs are pro-50

duced from a variety of sources, varying in resolution and cost, from highly accurate and51

detailed but expensive options to those with coarser resolution and lower cost. Among52

these, accurate DEMs can be obtained from airborne LiDAR surveys or from topographic53

surveys. Indeed, airborne LiDAR DEMs provide superior vertical accuracy at high spa-54

tial resolutions. However, it comes with high costs and limited availability; open-access55

LiDAR data covers merely 0.005% of the Earth’s land surface. This scarcity is attributed56

to the advanced technology, resources, and significant acquisition expenses involved (Hawker57

et al., 2018; Jarihani et al., 2015; Schumann & Bates, 2018). Open-access spaceborne58

DEMs, developed based on techniques such as radar interferometry, optical stereo match-59

ing, or photogrammetry, offer alternative options (Hawker et al., 2018; Nandam & Pa-60

tel, 2024; Zhang et al., 2019).61

In the last two decades, a variety of global or nearly Global digital elevation mod-62

els (GDEM) have been made freely accessible, including the Shuttle Radar Topography63

Mission (SRTM) DEM (Farr et al., 2007), the Advanced Spaceborne Thermal Emission64

and Reflection Radiometer (ASTER) DEM (Hirt et al., 2010), the ALOS World 3D-30m65

(AW3D30) DEM (Tadono et al., 2016), the Copernicus DEM (Fahrland et al., 2020), and66

NASADEM (Crippen et al., 2016). Although spaceborne DEMs are valuable alternatives67

to airborne DEMs, particularly in data-scarce regions, they have several drawbacks, in-68

cluding significant observational errors, a lack of fine spatial resolution, and the presence69

of noise, all of which contribute to uncertainty in the flood modeling and risk assessment70

(Zandsalimi et al., 2024; Biswal et al., 2023; Hinkel et al., 2021; Nandam & Patel, 2024;71

Sampson et al., 2016; Yan et al., 2015; Fernández et al., 2016). Given these limitations,72

it becomes imperative to innovate and develop methodologies aimed at enhancing the73

quality of topographical data derived from these models. In this research, we introduce74

a deep learning-based methodology that combines different GDEMs with remotely sensed75

imagery, road networks, and building footprints to enhance the accuracy and spatial res-76

olution of GDEMs tailored for urban flood modeling applications.77

A wide range of algorithms has been developed to correct errors in DEMs. These78

algorithms can be broadly classified into two categories: parametric regression and non-79

parametric regression (Ouyang et al., 2023). Parametric regression models focus on iden-80

tifying and correcting trends in DEM errors by applying models that fit the deviations81

found in DEM data with variables associated with errors, which are obtained from high-82

quality supplementary elevation measurements. These variables include factors such as83
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canopy cover, slope, aspect, elevation, vegetation height, and density (Hawker et al., 2018;84

Y. Li et al., 2022; Magruder et al., 2021; Preety et al., 2022; Su et al., 2015). For instance,85

Su et al. (2015) employed a multiple linear regression model to correct errors in SRTM86

data across vegetated mountainous terrains, utilizing terrain slope and vegetation pa-87

rameters as predictive variables. Zhou et al. (2020) also introduced a method focused88

on terrain to address both local and global inaccuracies in SRTM DEM data across moun-89

tainous regions. They adopted an adaptive approach for error modeling in the SRTM90

DEM, leveraging the Bayesian information criterion for initial modeling, and then ap-91

plying an M-estimator for parameter determination. This method improves the eleva-92

tion accuracy by 20%. Nonetheless, the implementation of this correction technique re-93

quires the determination of 15 model parameters.94

The second group of models involve non-parametric machine learning algorithms.95

Recent advancements in machine learning have enabled the development of sophisticated,96

high-dimensional models that capture the complex, nonlinear, and stochastic relation-97

ships between dependent and independent variables. Indeed, the broad application of98

machine learning algorithms has proven effective in tackling difficult challenges (Shen,99

2018), notably in refining DEMs to correct biases. A few studies in the literature have100

also demonstrated the efficacy of these machine learning techniques (Biswal et al., 2023;101

Kasi et al., 2020; Kim et al., 2020, 2021; Kulp & Strauss, 2018; Meadows & Wilson, 2021;102

Ouyang et al., 2023; Robinson et al., 2014; Wendi et al., 2016; Yue et al., 2017). For in-103

stance, Kulp and Strauss (2018) leveraged Artificial Neural Networks (ANNs) to enhance104

SRTM data in coastal regions, incorporating variables such as slope, canopy height, veg-105

etation density, data from the ICESat, and population density as inputs to the ANN model,106

resulting in approximately a 50% improvement in the RMSE of the derived SRTM DEM.107

However, their method was constrained to forested areas and is less effective in densely108

populated urban regions. In another study, conducted by Kim et al. (2020), an ANN al-109

gorithm was employed in conjunction with SRTM data and Sentinel-2 multi-spectral im-110

agery to enhance the precision of SRTM DEMs across urban landscapes, aiming for a111

target spatial resolution of 10 meters. A high-quality DEM served as the target data for112

training the ANN, which subsequently facilitated the generation of a high-quality DEM113

with an improvement in RMSE by approximately 38%. Furthermore, Meadows and Wil-114

son (2021) applied three machine learning techniques, including Random Forest, Densely115

Connected Neural Networks, and Fully Convolutional Neural Networks, to adjust for bi-116

ases in riverine bathymetry. This was achieved by analyzing the correlations between SRTM117

and LiDAR DEMs, alongside cloud-free composite imagery from Landsat and Sentinel118

satellites, complemented by 11 spectral indices. It is important to highlight that the re-119

gions examined by Meadows and Wilson (2021) predominantly consisted of open spaces.120

Additionally, Biswal et al. (2023) developed a method employing hybrid machine learning-121

based Multi-DEM Ensemble techniques with GDEMs like SRTM, ASTER, and ALOS-122

AW3D30 to correct river cross-sections. This approach improves hydrodynamic model-123

ing in data-sparse regions, demonstrating the effectiveness of using multiple DEMs in124

accurately simulating river dynamics with publicly accessible DEMs.125

Our literature review reveals three significant gaps in existing research on improv-126

ing the accuracy ans spatial resolution of GDEMs. First, most studies have focused on127

enhancing GDEM accuracy in open spaces, where terrain is relatively simple compared128

to the complexities of urban environments. Second, when urban areas have been exam-129

ined, efforts typically refined GDEMs to a spatial resolution (e.g., 10 meters or coarser)130

that is still insufficient for detailed hydraulic modeling and flood mapping. Third, many131

studies relied on a single DEM source and limited remote imagery data, significantly re-132

stricting the comprehensiveness and accuracy of the resulting models. In this study, we133

address these gaps by developing a deep learning-based methodology using the U-Net134

Convolutional Neural Network (CNN) architecture that is flexible to utilize and integrate135

a combination of multiple datasets, including GDEMs (i.e., ALOS, SRTM, NASADEM,136

and ASTER), satellite imagery from Landsat-8, Sentinel-2, Sentinel-1, and OpenStreetMap137
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data for road networks and building footprints, and produces improved DEMs (referred138

to as deep learning-derived DEM or simply DE-derived DEM) with a spatial resolution139

of 5 meters. We use error indices to compare the performance of the DL-derived DEM140

with GDEMs. We then demonstrate the value of the proposed methodology by analyz-141

ing flood simulation results and comparing the accuracy of flood extent mapping.142

2 Materials and Methods143

Figure 1 illustrates the methodological framework proposed in this research. First,144

we collect data from various sources and process them (section 2.1). Then, we develop145

a CNN U-Net architecture tailored to integrate these various datasets (section 2.2). The146

data is then split into training, validation, and testing sets to ensure robust model per-147

formance (section 2.4). We then conduct hyperparameter tuning to optimize the accu-148

racy of the model. The output of the model is DL-derived DEMs. Finally, we develop149

a flood simulation model to compare the performance of the DL-derived DEMs compared150

to GDEMs. In the following, we provide more detailed explanations of each step.151
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Figure 1. Schematic of the methodology proposed for enhancing GDEMs using CNN U-Net.

2.1 Data152

2.1.1 Topographic Data and Remote Sensing Imagery Data153

In this study, we utilized four different publicly available GDEMs: ALOS PALSAR154

(Tadono et al., 2016), SRTM (Farr et al., 2007), NASADEM (Bettiol et al., 2021), and155

ASTER (Hirt et al., 2010) (see Table 1). These GDEMs have a spatial resolution of 30156

meters and are derived using different remote-sensing technologies, notably Interferomet-157

ric Synthetic Aperture Radar (InSAR) and Stereography. InSAR is particularly effec-158

tive at penetrating vegetation and canopy cover, offering more accurate representations159
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of the surface elevation. Stereography, used in models like ALOS, relies on optical im-160

agery which although effective in clear conditions, tends to overestimate elevation in ar-161

eas with dense vegetation or cloud cover by mistaking canopy tops for ground level (Muench162

et al., 2022). This variance in technology not only affects the vertical accuracy of the data163

but also its applicability across different regions and environments. Incorporating these164

different datasets in our model enhances the deep learning algorithm by providing a richer165

training set that includes multiple perspectives of terrain representation. This ensures166

that the model is well-prepared to analyze and interpret diverse geographical features167

and elevation data more accurately, enhancing both its robustness and generalizability.168

Additionally, we collected the U.S. Geological Survey (USGS) high-resolution DEM as169

our reference or target DEM. USGS standard one-meter DEMs (with vertical accuracy170

of RMSE = 10cm) are produced exclusively from high-resolution light detection and171

ranging (Lidar) source data of one-meter or higher resolution through the 3D Elevation172

Program (USGS, 2016).173

Table 1. The Global Digital Elevation Models (GDEMs) considered in this study.

Spatial Estimated
Dataset Resolution Method Spatial Coverage Vertical Released Year

(m) Accuracy (m)

ALOS 30 Stereography 82°N to 82°S 5 2016
ASTER 30 Stereography 82°N to 82°S 5 2016
SRTM 30 InSAR 60°N to 56°S 9 Since 2015

NASADEM 30 InSAR 60°N to 56°S 5 2020

In this study, we also utilized both optical and radar-based remote sensing imagery,174

including Landsat 8, Sentinel 2, and Sentinel 1, to leverage the distinct advantages of175

each sensor system, allowing for generation of more accurate and high-resolution DEMs176

and improving their utility in applications like flood modeling and terrain analysis. Land-177

sat 8 offers high radiometric resolution and capturing data in both visible and infrared178

spectra and is widely used for monitoring changes in land use and land cover (Alam et179

al., 2020). Landsat 8 product helps identify surface features that can contribute to re-180

fining DEMs. Sentinel 2 product aims at monitoring variability in land surface condi-181

tions at a high resolution, facilitating detailed observation of surface changes and enhanc-182

ing the accuracy of DEMs by providing precise information on land cover changes (ESA,183

2024). Sentinel 1 is especially effective in monitoring sea ice, detecting oil spills, and ob-184

serving marine environments. It is also valuable for land-based applications such as forestry,185

agriculture, and mapping changes in land surfaces. The radar imaging capability of Sen-186

tinel 1 is crucial for emergency response in scenarios like floods and earthquakes, where187

real-time, weather-independent data is essential for rapid assessment and decision-making188

(Islam & Meng, 2022).189

Additionally, we incorporated widely used spectral indices in our methodology due190

to their ability to enhance the model’s capacity to distinguish between different land cover191

types, which is crucial for accurately capturing variations in urban landscapes. These192

indices, derived from Landsat 8 and Sentinel 2, include the Normalized Difference Veg-193

etation Index (NDVI) (Rouse et al., 1974), Normalized Difference Water Index (NDWI)194

(McFeeters, 1996), Normalized Difference built-up Index (NDBI) (Zha et al., 2003), Bare195

Soil Index (BSI), Enhanced Vegetation Index (EVI) (H. Q. Liu & Huete, 1995), and Au-196

tomated Water Extraction Index (AWEI) (Feyisa et al., 2014). These indices have been197

proven effective in various applications, such as water body identification, urban growth198

tracking, and vegetation monitoring (“Assessing LULC changes and LST through NDVI199

and NDBI spatial indicators: A case of Bengaluru, India”, n.d.; Sima et al., 2023; Kebede200
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et al., 2022), helping identify key features like green spaces, buildings, and water bod-201

ies. By integrating these indices, our approach aims to reduce bias in these areas and202

improve the model’s precision in detecting landscape features.203

2.1.2 Open Street Map Layers204

Building footprints and road networks are key features in urban environments, and205

incorporating these elements in our input data is expected to enhance the model’s ac-206

curacy. To achieve this, we extracted building footprints and road networks from Open-207

StreetMap (OSM) (OSM, 2024) using the OSM plugin of the open-source Quantum Ge-208

ographic Information System software (QGIS, 2024). Since OSM layers are in shapefile209

format, we rasterized the extracted features to match the grid resolution and alignment210

of other inputs, ensuring consistency across all data layers used in the analysis.211

2.1.3 Data Processing212

A comprehensive data processing is essential to ensure consistency across all the213

different input datasets used in the model. We obtained the remote imagery data based214

on the date of the high-resolution USGS DEM (1-meter resolution) to ensure temporal215

consistency across all datasets. A common coordinate system, NAD 1983 UTM Zone 18N,216

was defined for all data, and all datasets were resampled to a 5-meter spatial resolution217

to maintain consistency in spatial analysis.218

For Landsat-8, processing steps included radiometric calibration to convert digi-219

tal numbers to reflectance, atmospheric correction to address atmospheric effects, cloud220

masking to remove clouds and shadows, and geometric correction to ensure spatial ac-221

curacy. We excluded certain bands that were not relevant for our analysis, such as Cir-222

rus band (1.36 - 1.38 µm) and Thermal Infrared Sensor bands (10.6 - 11.19 µm and 11.5223

- 12.51 µm), which are primarily used for atmospheric correction and thermal measure-224

ments. Similar processing was performed for Sentinel-2, including atmospheric correc-225

tion using Sen2Cor and the exclusion of the Water Vapour band (0.945 µm) and SWIR226

Cirrus band (1.375 µm), which are also used for atmospheric correction and cloud de-227

tection. Both datasets were resampled to a 5-meter spatial resolution using the Near-228

est Neighbor method to preserve the original values without introducing new interpo-229

lated data, which is critical for maintaining the integrity of the data when downsampling.230

Specific indices such as NDWI, NDVI, NDBI, BSI, EVI, and AWEI were then calculated231

for both datasets. Sentinel-1 data processing involved applying orbit files for orbital cor-232

rections, thermal and border noise removal, calibration to convert SAR data to the backscat-233

ter coefficient, speckle filtering, range-Doppler terrain correction using a DEM, and con-234

version to dB. OSM layers, including building footprints and road networks, were ras-235

terized into 5-meter spatial resolution binary raster layers.236

GDEMs (ALOS, ASTER, SRTM, NASADEM) were resampled from their origi-237

nal 30-meter resolution to 5 meters using the Nearest Neighbor method. This method238

was chosen for downsampling to minimize data distortion and preserve the integrity of239

the original elevation values. A critical step was evaluating different resampling meth-240

ods (e.g., Nearest Neighbor, bilinear, cubic) for the high-resolution USGS DEM (1-meter241

resolution). We determined that Nearest Neighbor was the most effective method for up-242

sampling to a 5-meter resolution, ensuring that the resampled DEM accurately repre-243

sented the original high-resolution data. This resampled 5-meter DEM was then used244

as the reference DEM for the CNN U-Net model. The final step involved stacking all pro-245

cessed bands and indices into a single raster layer in the following order: GDEMs, Land-246

sat 8 bands, indices from Landsat 8, Sentinel-2 bands, indices from Sentinel-2, Sentinel-247

1 bands, OSM layers, and the target 5-meter DEM. These meticulously prepared datasets248

were essential for training the CNN U-Net model to extract the DL-derived DEM.249
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2.2 CNN U-Net Model250

Convolutional Neural Networks (CNNs) are a specific type of neural network cre-251

ated for tasks related to image processing and computer vision. They excel at recogniz-252

ing spatial patterns within images, irrespective of the patterns’ positions, and can pro-253

cess these patterns at various scales (Fukushima, 1988; Krizhevsky et al., 2017). Unlike254

traditional methods that analyze individual pixels or grid cells, CNNs also consider the255

features of surrounding neighbors, effectively capturing spatial relationships within the256

area. This capability has led to their widespread success in tasks such as image classi-257

fication and segmentation (Ronneberger et al., 2015; Long et al., 2015), and they have258

been effectively applied in analyzing satellite imagery as well (Ma et al., 2019; Wieland259

& Martinis, 2019; Meadows & Wilson, 2021; Chang & Chen, 2024; Chudasama et al.,260

2024; Masafu & Williams, 2024).261

Given the effectiveness of CNNs in analyzing spatial patterns and relationships be-262

tween features in imagery, this study employs the U-Net architecture, a specialized form263

of CNN that was originally developed for biomedical image segmentation (Ronneberger264

et al., 2015). U-Net is particularly well-suited for the purpose of our study due to its ef-265

ficient data fusion capabilities that allows leveraging multiple satellite data sources and266

GDEMs to enhance the predictive accuracy and detail of the model. As shown in Fig-267

ure 2, the structure of the U-Net model is symmetrical, representing a variant of the Fully268

Connected Network. It consists of two sub-networks: an encoder (contracting path) and269

a decoder (expansive path), with skip connections between these units. The encoder em-270

ploys two consecutive convolutions followed by a max pooling operation for progressive271

downsampling, while the decoder uses a symmetrical expansive path for upsampling and272

reconstructing the output segmented image.273

Figure 2. CNN U-Net Architecture for DEM Enhancement

The downsampling part consists of four convolution blocks, each containing two274

consecutive convolution operations using a 3 × 3 kernel size. These convolutions are cru-275

cial for extracting spatial features from the input images. After each convolution, a Rec-276

tified Linear Unit (ReLU) activation function is applied. This is followed by a 2 × 2 max277

pooling operation with a stride of 2 for downsampling, which reduces the spatial dimen-278
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sions while simultaneously doubling the number of feature maps at each convolution block,279

thus progressively enhancing the feature depth.280

Conversely, the decoder part of the U-Net architecture works to reconstruct the spa-281

tial dimensions of the input image, progressively restoring the detailed segmentation. Each282

of the four upsampling blocks in the decoder uses a 2 × 2 transposed convolution with283

a stride of 2 to incrementally increase the resolution of the feature maps. Following the284

upsampling, the feature maps from the corresponding encoder block are reintegrated via285

skip connections. This crucial step retrieves spatial details lost during the downsampling286

phase and helps preserve the context of the input image. After the reintegration, each287

block applies two consecutive 3 × 3 convolutions to refine the features further, followed288

by ReLU activation. The cycle of upsampling, feature integration, and convolution con-289

tinues across all blocks, ensuring that the resolution and detail are progressively restored290

to match the original input dimensions. The decoder culminates in a final convolutional291

layer that applies a 1 × 1 convolution, producing the final output without additional ac-292

tivation scaling. These output values represent normalized elevation data, scaled accord-293

ing to the min-max normalization applied to the original DEM data. The final output294

reflects detailed and accurate elevation profiles, reinstating the DEM’s original dimen-295

sions after undergoing transformations through the encoder and decoder pathways.296

2.3 Study Area297

To apply the proposed methodology, we selected the City of Portsmouth, in Vir-298

ginia as our case study. Located in the coastal plain of southeastern Virginia, near the299

Hampton Roads Harbor where the James and Elizabeth Rivers meet the Chesapeake Bay300

(see Figure 3a), Portsmouth is highly vulnerable to coastal flooding caused by storm surges301

from nor’easters and tropical cyclones. The city’s low elevation and limited drainage ca-302

pacity also make it vulnerable to pluvial flooding during heavy rainfall events (U.S. Army303

Corps of Engineers, Norfolk District, 2015). The majority of the city encompasses de-304

veloped areas with a broad spectrum of land uses, including various classes of residen-305

tial development, commercial and industrial areas, as well as governmental installations.306

These conditions make Portsmouth an ideal case study for the purpose of our research.307

The study area was divided into distinct datasets for training, validation, and test-308

ing, as illustrated in Figure 3. The training and validation datasets (areas) were used309

to train and fine-tune the the CNN U-Net model, and the test dataset was exclusively310

used to evaluate the model. Specifically we chose a watershed within the test area that311

is highly vulnerable to flooding and has an extensive flooding history. The study area312

excluding the test areas was randomly divided into training (green) and validation (blue)313

datasets, following an 80/20 ratio. This random partitioning was implemented to enhance314

the model’s generalizability across varying geographical features. To further improve the315

generalizability of the model, the training dataset was selected to cover a sufficiently large316

area, incorporating a diverse range of land cover types, complex structures such as build-317

ings and roads, as well as green spaces and water bodies. To ensure the continuity and318

smoothness of the elevation profiles across patch boundaries, an overlap of 10% was main-319

tained between patches. The validation dataset was used to fine-tune and evaluate the320

model’s performance during training.321
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Figure 3. Study area in the City of Portsmouth in Coastal Virginia with different delin-

eations used in the CNN U-Net mode. (a) shows area within the City of Portsmouth selected

for our study, including the sub-area selected for testing the model (red box) and the watershed

within the test area used for model evaluation (test watershed). CS1 to CS6 denote defined cross-

sections for evaluating the DL-derived DEM performance. (b) shows the delineation of the study

area into training (green), validation (blue), and testing (red) patches for the CNN U-Net model.

2.4 Hydrodynamic Model322

Besides directly comparing our DL-derived DEM to GDEMs, it is important to quan-323

tify the extent to which improvements in the DEM translate into enhancements in flood324

modeling. Therefore, in this study, we use the Two-dimensional Unsteady FLOW (or325

TUFLOW) model (Syme, 2001) to develop a flood simulation model for a watershed within326

the test area that is located inside the Paradise Creek basin and covers about 12 square327

kilometers (Figure 3a). This area specifically selected due to its vulnerability to flood-328

ing, making it critical for evaluating our flood simulation strategies.329

The model’s domain and topography were defined using a high-resolution DEM,330

with the basin outlet connecting to the Southern Branch of the Elizabeth River. Data331

crucial for the simulations, including tide levels and rainfall, were sourced from the Sewells332

Point station and six rainfall gauges managed by the Hampton Roads Sanitation Dis-333

trict, respectively. For this study, we specifically focused on an event characterized by334

high rainfall and normal tide levels, recorded on 11/12/2020. This event was chosen for335

its potential to cause significant flooding, with all gauges reporting an average precip-336

itation of 132 mm. Details on these data sources, additional model parameters, and vi-337

sualizations of the precipitation hydrograph and tide levels for this significant event are338

provided in the supplementary materials (Text S1).339

For validating the hydrodynamic model, we utilized Waze-reported points from a340

significant flood event on 11/12/2020. This approach allowed us to compare and eval-341
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uate the model’s predictions of flooded streets in Portsmouth with real-time, location-342

specific incident reports collected via the Waze mobile app. The locations of the Waze343

points used in this study are highlighted in Figure 3a. Details on the integration and anal-344

ysis of these data points, as well as on the validation of the flood modeling, are provided345

in the supplementary materials (Text S1).346

2.5 Error Analysis347

This study performs an error analysis to evaluate the accuracy of both the DL-derived348

DEM and GDEMs compared to the reference DEM. The quantitative metrics used in-349

clude Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Percent-350

age Error (MPE), and the Correlation Coefficient (R²). RMSE measures overall error351

by accounting for both variance and bias, while MAE quantifies the systematic error,352

indicating how much predictions deviate on average from the ground truth. MPE pro-353

vides insight into the relative error magnitude as a percentage, and R² assesses how well354

the model fits the data.355

Additionally, we applied the flood extent evaluation metrics proposed by Wilks (2011)356

using a pixel-wise contingency table comparing predicted and observed flood extents. The357

contingency table includes Hits (Predicted and Observed), False Alarms (Predicted but358

Not Observed), Misses (Not Predicted but Observed), and Correct non-events (Not Pre-359

dicted and Not Observed). From this, three key performance metrics were derived: Prob-360

ability of Detection (POD), False Alarm Ratio (FAR), and Accuracy. POD measures the361

ratio of correctly predicted flood pixels to observed flood pixels, ranging from 0 to 1, where362

1 indicates perfect detection. FAR quantifies the proportion of false flood predictions,363

with 0 being ideal. Accuracy reflects the percentage of correct flood and non-flood pixel364

predictions on a pixel-wise scale, with values ranging from zero to one, where one indi-365

cates perfect accuracy. Further details and formulations for all metrics are provided in366

the supplementary materials (Text S2).367

3 Results368

In this section, we present the results of our study, organized into three main sec-369

tions. First, we evaluate the vertical accuracy of GDEMs in the test area, using the USGS370

high-resolution DEMs as our reference DEM (3.1). Next, we present details on the con-371

figuration of the CNN U-Net model (3.2). Finally, in section (3.3), we evaluate the per-372

formance of the proposed framework in DEM enhancement.373

3.1 Evaluating the accuracy of GDEMs374

Figure 4 and Table 2 compare the accuracy of the four GDEMs used in this study375

(i.e, ALOS, ASTER, SRTM, and NASADEM) with the USGS high-resolution DEM (at376

5-m resolution) – the reference DEM – over the test watershed. Figure 4a-d show that377

the GDEMs generally cannot accurately represent the fine-scale features of the area (e.g.,378

road networks and building footprints) due mainly to their low spatial resolution and379

low vertical accuracy. Because GDEMs are available at a 30-meter resolution, downscal-380

ing them to a 5-meter resolution using the Nearest Neighbor method leads to a smoothed381

topography when compared to a high-resolution DEM, where individual features would382

be more distinctly represented. Although some variations are visible in the elevation data383

of the GDEMs, these variations occur at a broader scale and are not as detailed or pre-384

cise as those found in the high-resolution DEM. In terms of accuracy, GDEMs exhibited385

a higher range of elevation values compared to the reference DEM, ranging from a min-386

imum of -17 to a maximum of 44 meters. Specifically, Figure 4e-h show significant bi-387

ases and a wider elevation span in the GDEMs, indicating an overestimation which is388

further highlighted by error measures in Table 2. Among the four GDEMs, as shown in389

Table 2, NASADEM shows the closest alignment to the reference DEM with the low-390

est tendency for overestimation, indicating a more reliable representation of the terrain391
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(RMSE = 3.41(m), MAE = 2.54(m), MPE = 20%). After NASADEM, ALOS per-392

forms better compared to the other GDEMs, particularly in representing riverine and393

coastline features. On the other hand, ASTER and SRTM drastically overestimate the394

elevation with large RMSE, MAE, and R2 values. These results underline the neces-395

sity of developing more accurate and reliable DEMs tailored for urban flooding appli-396

cations, where minimizing both overestimation and underestimation is crucial for pre-397

cise modeling.398
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Figure 4. Comparison between the four GDEMs used in this study (ALOS, ASTER, NASA-

DEM, SRTM) and the reference DEM. (a-d) show the elevation differences between the four

GDEMs and the reference DEM. (e-i) compare the frequency distribution of elevation values

between the GDEMs and the reference DEM.
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Table 2. Evaluation metrics (RMSE, MAE, MPE, and R²) comparing the performance of

GDEMs against the reference DEM.

RMSE(m) MAE(m) MPE(%) R2

ALOS 3.79 2.76 171 0.19
ASTER 6.65 5.94 317 0.064

NASADEM 3.41 2.54 20 0.13
SRTM 5.32 4.20 178 0.056

3.2 Configuration of the CNN U-Net Model399

The computational setup for model training involved using PyTorch on a system400

equipped with a 13th Gen Intel(R) Core(TM) i9-13900H processor, 64 GB of RAM, and401

an NVIDIA GeForce RTX 4070 GPU, leveraging CUDA for efficient processing. The op-402

timal configuration of the CNN U-Net model was determined through an extensive hy-403

perparameter tuning process, specifically optimized for handling the multi-dimensional404

input data. We chose ReLU as the activation function and RMSE as the loss function,405

as they showed superior performance in more accurately processing and analyzing ele-406

vation data (refer to Appendix A for more details about the CNN U-Net model config-407

uration). The model’s training dynamics revealed a sharp initial decrease in both train-408

ing and validation losses, with stabilization occurring afterward (see Figure A1), indi-409

cating effective training and avoidance of overfitting. The close alignment between train-410

ing and validation losses throughout the training further demonstrates the model’s strong411

generalization capabilities. Following the completion of training and hyperparameter tun-412

ing, the best-performing model configuration was applied to the test area.413

3.3 Evaluating the Performance of the CNN U-Net model in DEM enhance-414

ment415

To assess the performance of the CNN U-Net model in DEM enhancement, we first416

compare the DL-derived DEM with reference DEM using error measures over the test417

watershed. Then, we provide a higher-resolution comparison between DL-derived DEM,418

reference DEM, and four GDEMs in six cross sections within the the test watershed (see419

Figure 3 for the cross sections). Finally, we demonstrate the extent to which the DL-derived420

DEM improves flood modeling compared to the four GDEMs.421

3.3.1 Assessing the Accuracy of the DL-derived DEM422

Figure 5(a-b) demonstrates that the DL-derived DEM closely replicates the spa-423

tial patterns of the reference DEM. Importantly, the model accurately captures details424

such as road networks and river paths, both of which are essential features in flood mod-425

eling in urban settings. Figure 5(c-f) further demonstrates that, although there are ar-426

eas in the test watershed where the DL-derived DEM either underestimates or overes-427

timates elevation, its elevation histogram closely aligns with that of the reference DEM.428

Additionally, the elevation differences between the DL-derived DEM and the reference429

DEM mostly fall within the range of -1 to +1 meter. The R2 value of 0.78 shows a strong430

correlation between the DL-derived DEM and the reference DEM, meaning the model431

effectively captures elevation changes. The RMSE of 0.86 meters indicates that the av-432

erage elevation error is relatively small, reflecting the model’s high accuracy. With an433

MAE of just 0.47 meters, the average error is less than half a meter, further confirm-434

ing the model’s precision. The error measures of R2 = 0.78, RMSE = 0.86(m), and435

MAE = 0.47(m) further demonstrate the accuracy of the DL-derived DEM, particu-436

larly compared with GDEMs (refer to Table 2), highlighting the capability of the pro-437

posed model in generating DEMs that can capture detailed features with higher accu-438
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racy. It is worth noting that the reference DEM shows a higher frequency of elevations439

above 5 meters, likely due to the model’s training limitations, e.g., when the training dataset440

lacks certain elevation ranges found in the test dataset, referred to as out-of-distribution441

data in deep learning (Yang et al., 2021).442

Figure 5. Comparison between DL-derived DEM and reference DEM. (a) shows the reference

DEM over the test area; (b) shows the DL-derived DEM over the test area; (c) shows the eleva-

tion difference between the DL-derived and reference DEMs; (d-e) compare the DL-derived DEM

with the reference DEM using a scatter plot and a histogram; and (f) shows the histogram of the

error (i.e., the difference between DL-derived and reference DEMs).

3.3.2 Comparison of Elevation Profiles among Various DEMs443

For a more detailed evaluation of the DL-derived DEM, we compared the DL-derived444

DEM with the reference DEM and the four GDEMs across six cross sections over the445

–16–



manuscript submitted to Journal of Hydrology

the watershed. As shown in Figure 3, these cross sections were purposefully selected in446

different parts of the test area to represent various key features: three cross sections along447

the river path (i.e., CS1 at the beginning, CS2 in the middle, and CS3 at the end of the448

river), two cross sections in urban, developed areas (i.e., CS4 and CS6), and one cross449

section in green space areas (i.e., CS5). The elevation profiles over these cross-sections450

presented in Figure 6 reveal that the GDEMs fail to accurately represent the profiles across451

the cross-sections, whereas the DL-derived DEM exhibits significant improvements in452

accuracy (refer to Table S5 for RMSE, MAE, and R2 values). For the river path pro-453

files, Figure 6(a-c) shows that the DL-derived DEM closely aligns with the reference DEM454

(with average RMSE of 0.78 (m)) while the GDMEs either overestimate or underesti-455

mate the elevation with average RMSE of 3.24 (m) for ALOS, 7.14(m) for ASTER, 2.32456

(m) for nasadem, and 4.16(m) for SRTM. The elevation profiles in urban areas and green457

space area (Figure 6(d-f)) show similar patterns. In CS4, as an example, where the GDEMs458

significantly overestimate the elevation, the DL-derived DEM improves both RMSE and459

MAE by approximately 90%. These results further highlight the superior performance460

of the DL-derived DEM in accurately capturing elevation profiles across diverse terrain461

features compared with the GDEMs.462

Figure 6. Elevation profiles in the six cross sections identified in the test watershed based on

the four GDEMs, the DL-derived DEM, and the reference DEM.
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3.3.3 Comparative Analysis of Flood Inundation Extents Using Various463

DEMs464

The flood inundation extents generated from GDEMs (Figure 7a-d) display465

unrealistic patterns, notably lacking coherent flow patterns over road networks and466

incorrectly spreading from lower to higher elevation areas. This not only results467

in a spatial misrepresentation but also leads to an overestimation of flood extents,468

compromising the accuracy of flood mapping and risk assessments. In contrast, the469

reference DEM delineates a precise flood pattern that originates from coastal and470

riverine areas, subsequently spreading into floodplains (Figure 7e). This pattern471

accurately captures the dynamics of rainfall-driven flooding, highlighting inundation472

across street networks and low-lying areas first.473

On the other hand, the DL-derived DEM (Figure 7f) significantly improves474

flood inundation mapping compared with GDEMs, closely matching the reference475

DEM in terms of coastal and riverine flood patterns and correctly modeling flood476

dispersion along roads, though it slightly overestimates flood extents in some areas.477

The flood extent derived from the DL-derived DEM also captures flooding in green478

spaces and artificial water bodies—features conspicuously absent in the GDEMs.479

Although the flood extents derived from GDEMs coincidentally align with some480

Waze points, suggesting potential flood occurrence at these locations, their overall481

accuracy is diminished by the lack of a logical flood progression and the tendency482

to overestimate. Conversely, the DL-derived DEM not only corresponds with Waze483

points but also aligns more closely with the reference DEM’s flood patterns, offer-484

ing greater reliability in predicting flood extents and supporting more accurate risk485

assessments.486
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Figure 7. Comparison of flood inundation extent using different DEMs. (a-d) correspond to

ALOS, ASTER, SRTM, and NASADEM, respectively. (e) corresponds to the reference DEM.

(f) corresponds to the DL-derived DEM. (i) and (ii) show detailed flood mapping comparisons in

road networks in the areas identified in (f).
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Referring to the performance metrics displayed in Figure 7, our analysis shows487

that the DL-derived DEM, significantly enhances flood modeling compared with488

the GDEMs, highlighted by higher accuracy, higher Probability of Detection, and489

lower False Alaram Rate. This improvement can be attributed to several key fac-490

tors inherent in our methodology. First, the CNN U-Net model’s enhanced spatial491

pattern recognition capability allows the DL-derived DEM to closely follow the492

distribution of critical features in the reference DEM, such as road networks and493

water channels, which are essential for predicting flood flow paths in urban areas.494

Second, our model’s ability to refine riverine and coastline features provides a more495

precise boundary condition for flood modeling, leading to better prediction of flood496

dynamics originating from these key areas. Additionally, the CNN U-Net model ef-497

fectively reduces elevation errors, resulting in a more accurate representation of the498

landscape, which further minimizes false flood predictions.499

4 Discussion500

Previous studies highlighted the limitations of using GDEMs in urban flooding,501

including overestimation or underestimation of flood depth and extent, inaccuracies502

in spatial flood distribution, and flawed flood risk assessments (Zandsalimi et al.503

(2024); Biswal et al. (2023); Nandam and Patel (2024)). In this research, we develop504

a Deep Learning-based framework that utilizes CNN U-Net model and integrates505

various datasets to improve the resolution and the accuracy of GDEMs. By inte-506

grating multiple datasets, including various GDEMs and remote imagery products,507

our model leverages the unique strengths of each dataset. For instance, regarding508

GDEMs, NASADEM and SRTM are derived using the InSAR method, which can509

penetrate cloud cover and vegetation, offering a more precise representation of the510

ground surface compared with ALOS and ASTER (Muench et al., 2022). Addi-511

tionally, incorporating remote imagery data, such as Landsat 8, which offers 30m512

resolution for multispectral bands and 15m for panchromatic bands (Roy et al.,513

2014), and Sentinel 2, which provides higher spatial resolution and more frequent514

revisit times (Drusch et al., 2012), enhances the model’s capability to monitor envi-515

ronmental changes. Sentinel 1’s SAR technology further strengthens the model by516

enabling accurate mapping in all weather conditions and during nighttime (Torres et517

al., 2012). This integration of multi-source data ensures that our CNN U-Net model518

is a practical solution for DEM enhancement, especially in data-limited areas.519

Our results showed that given the robust capabilities of CNNs in detecting520

spatial patterns and uncovering relationships within imagery, the DL-derived DEM521

demonstrates significant improvements in capturing detailed features of urban en-522

vironments compared with GDEMs (see Figure 5 and Figure 6). Specifically, the523

model excels in generating detailed road networks, which are crucial for flood mod-524

eling in urban settings. Additionally, other important features such as riverine and525

coastal areas, green spaces, and artificial water bodies are rendered with greater526

precision. Consequently, our results demonstrated substantial improvements in flood527

inundation mapping, (Figure 7f), closely mirroring the reference DEM in terms of528

coastal and riverine flood patterns and correctly depicting flood dispersion along529

road networks.530

The reference DEM we used to train the CNN U-Net model was resampled531

from the USGS 1-meter DEM, which represents the topographic bare-earth sur-532

face and is hydrologically conditioned to flatten water bodies. To create bare-earth533

DEMs, LiDAR observations undergo a series of processes to filter out returns from534

vegetation, anthropogenic, and other features, followed by gridding the observa-535

tions with resampling methods (Aristizabal et al., 2024; Passalacqua et al., 2015).536

Although the USGS DEM provides a high-quality representation of the bare-earth537

surface, because we use a wide range of products in our input dataset, the DL-538
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derived DEM generated by the CNN U-Net model includes additional detailed539

features such as wharves or piers (Figure 8a), building footprints (Figure 8b-c), and540

roads over waterbodies (Figure 8d-e) that were missing in the USGS high-resolution541

DEM. While this highlights the capability of the proposed model in providing a542

detailed and accurate representation of various features, it is crucial to perform post-543

processing, including hydrologic conditioning (Pearson et al., 2023; Lidberg et al.,544

2017), to ensure that these generated features do not negatively impact water flow545

and other hydrological processes.546

Figure 8. Visualization of enhanced topographic details Using CNN U-Net Model. Each sub-

plot juxtaposes the true-color satellite image with corresponding sections of the reference and

DL-derived DEMs, highlighting a terrain feature captured by the DL-derived DEM that is absent

in the reference DEM.

One important assumption in our study was that the CNN U-Net model was547

specifically trained using the USGS high-resolution DEM for the case study area548

located in coastal Virginia, as presented in Figure 3. While the model was evaluated549
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using a test dataset that was not utilized during training or validation (see Figure550

3a), this assumption limits the generalizability of the model. To assess its general-551

izability, we applied the model to two new sites. The first site (Site 1) also lies in552

coastal Virginia but located in Norfolk, VA, entirely outside the boundary of the553

study area. The second site (Site 2) is in Wilmington, NC, another coastal loca-554

tion. These two sites were selected because they share similar characteristics with555

Portsmouth, VA, in terms of terrain, topography, development, and flood risk. Table556

3 presents the performance of the model in terms of RMSE and MAE (refer to Fig-557

ures S2 and S3 for detailed visual comparisons are provided). The results show that558

the DL-derived DEM performs better than the GDEMs at both sites. However, the559

improvement is smaller than in the case study area, as the model was not trained560

for these two new sites. Additionally, the results for Norfolk show a greater improve-561

ment compared to Wilmington, likely because Norfolk shares more similarities with562

the case study area.563

Table 3. Comparison of the performance of the DL-derived DEM and GDEMs using evalua-

tion metrics with respect to the reference DEM in two unseen study sites located within Norfolk,

VA (Site 1) and Wilmington, NC (Site 2).

Site 1 - Norfolk, VA Site 2 - Wilmington, NC
RMSE (m) MAE (m) RMSE (m) MAE (m)

DL-derived DEM 0.99 0.90 1.81 1.46
ALOS 4.16 3.04 6.23 4.80
ASTER 8.50 7.82 5.39 4.05

NASADEM 3.25 2.66 3.49 2.78
SRTM 4.47 3.92 2.78 2.12

5 Conclusion564

Flood modeling is a crucial aspect of flood risk assessment, heavily dependent565

on on DEMs. However, accurate, high-resolution DEMs are not widely available.566

As a result, researchers and practitioners often rely on GDEMs, which are typically567

available at a 30-meter resolution and suffer from vertical biases. In this study, we568

demonstrated the significant potential of a deep learning-based approach, specifically569

the CNN U-Net model, combined with data fusion, in enhancing DEM resolution570

and accuracy by integrating multi-source data. The DL-derived DEM not only pro-571

vides a high-resolution representation of urban features but also enhances flood sim-572

ulation accuracy, making it a valuable tool for urban flood management. As such,573

our study effectively addresses the common limitations associated with GDEMs574

such as lower spatial resolution, the inability to capture detailed urban features, and575

their inherent errors (Fisher & Tate, 2006; Wechsler, 2007). The DL-derived DEM576

achieved an RMSE of 0.86 (m) and an MAE of 0.47 (m), representing an 74.7%577

and 81.4% improvement over the RMSE (3.41 m) and MAE (2.54 m) values of the578

best-performing GDEM (NASADEM), respectively. In terms of flood modeling, the579

overall accuracy of the DL-derived DEM is 71%, indicating a significant improve-580

ment over the GDEMs. Specifically, the POD shows a 12% increase, reflecting a581

more reliable identification of flood-prone areas. Additionally, the FAR decreased by582

13%, suggesting a reduction in the misclassification of non-flooded areas as flooded.583

Although the proposed CNN U-Net model demonstrates significant improve-584

ments in DEM resolution and accuracy, its generalizability is likely limited to areas585

with characteristics similar to the study area, particularly those with similar topog-586

raphy, elevation ranges, and land cover types. Addressing this limitation requires587
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expanding the training datasets to include a broad range of topographic conditions,588

elevation ranges, and land cover types and leveraging transfer learning techniques to589

enhance the model’s adaptability. Additionally, future research can focus on refin-590

ing the deep learning models to further reduce prediction errors and enhance their591

applicability. One promising direction is the use of hydrologic conditioning pro-592

cesses, similar to those employed by USGS, to refine stream networks and improve593

hydrologic accuracy. Finally, exploring hybrid machine learning algorithms to post-594

process the improved DEM can also offer further refinement and is likely to reduce595

overestimation issues.596

Appendix A: CNN U-Net Model Configuration and Performance597

In this Appendix, we provide an overview of the configuration and architec-598

tural details of the CNN U-Net model discussed in Section 3.2. Table A1 outlines599

the key hyperparameters and their best values that have proven most effective dur-600

ing model training. Figure A1 illustrates the training and validation loss curves,601

showcasing the model’s performance over 150 epochs.602

During the configuration process, we evaluated several ranges for specific pa-603

rameters to identify the best-performing settings. For the activation function, we604

tested ReLU, LeakyReLU, and ELU, ultimately selecting ReLU for its stable and605

accurate results in processing elevation data. The learning rate, a hyperparame-606

ter, was fine-tuned in the range of 0.0001 to 0.001. Our analysis determined that607

a learning rate of 0.00015 provided an optimal balance between convergence speed608

and model performance. Additionally, we adjusted the number of encoding blocks609

and base filters, with four encoding blocks and a base filter size of 64 yielding the610

highest accuracy for DEM enhancement. These optimized settings were determined611

using metrics such as RMSE and MAE to guide the selection of the most effective612

values. Upon implementation on the test dataset (the entire area enclosed within the613

red box in Figure 3-b), the model demonstrated high precision, achieving an average614

RMSE of 0.032 and an average MAE of 0.0199. These metrics, derived from nor-615

malized data ranging from 0 to 1, ensure that the error assessments are consistent616

and comparable across different datasets and conditions.617

Table A1. Key configuration settings of the CNN U-Net model for DEM enhancement. This

table outlines the primary settings used, including activation functions, learning parameters,

and architectural choices. The values in bold represent the best-performing settings based on

hyperparameter tuning.

Hyperparameter Best Value

Input Channels 39
Activation Function ReLU

Learning Rate 0.00015
Number of Epochs 150

Loss Function RMSE
Optimizer Adam
Patch Size 128
Batch Size 64
Overlap (%) 10

Number of encoding blocks (depth) 4
Base Filter 64
Kernel Size 3
Pool Size 2
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Figure A1. Training and Validation Loss Curves for the CNN U-Net Model: This graph dis-

plays the logarithmic scale loss over 150 epochs, with the blue line representing the training loss

and the orange line depicting the validation loss.

Appendix B: Supplementary material618

The supplementary material document provides supplementary information re-619

lated to the flood model (Text S1), error analysis (Text S2), comparative analysis of620

elevation profiles (Text S3), model performance outside of the case study area (Text621

S4), and the datasets used in this study (Text S5).622

Acronyms623

DEM Digital Elevation Model624

GDEMs Global Digital Elevation Models625

CNN Convolutional Neural Network626

ALOS DEM Advanced Land Observing Satellite DEM627

SRTM DEM Shuttle Radar Topography Mission DEM628

ASTER DEM Advanced Spaceborne Thermal Emission and Reflection Radiome-629

ter DEM630

OSM OpenStreetMap631

DL-derived DEM Deep Learning-derived DEM632

Reference DEM USGS DEM 1m, resampled to 5m in this study633

CS1–CS6 Cross Sections 1 through 6634

RMSE Root Mean Square Error635

MAE Mean Absolute Error636

MPE Mean Percentage Error637

POD Probability of Detection638

FAR False Alarm Ratio639
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