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Abstract 

Web services providing machine-accessible interfaces to environmental data are 

now commonplace. Building on this, a current trend is to expand these Web services to 

provide on-demand access to model and analysis services. This progression suggests the 

future possibility of cloud-based decision support systems (DSSs) integrating distributed 

data and analysis services provided through a host of providers.  Such distributed 

environmental DSSs have many potential benefits, but would require highly scalable and 

responsive Web services. The objective of this study is to assess the current feasibility of 

building distributed environmental DSSs from existing web services in the United States. 

Results show that, of the many available Web services providing information about soils, 

river network topology, watersheds, streamflow, etc., response times are often only a few 

seconds for a small project area, but can grow exponentially as the project area increases. 

On-demand watershed delineation remains a slow to respond services relative to the other 

services tested. Also, the results suggest the need to better co-locate servers near client 

applications to speedup response times. Collectively, these results provide specific areas 

where future research is needed in order to achieve the vision of on-demand distributed 

environmental DSSs. 

Keywords: web services; decision support systems; environmental modeling 

 

 

1 INTRODUCTION 

The Internet has given researchers, scientists, and engineers the ability to quickly 

access and use data from different sources. The volume of data being produced in 

scientific fields is doubling yearly (Szalay and Gray, 2006) and these data are 

increasingly being placed in online repositories and databases. Technologies like sensor 

networks and remote sensing have contributed to the surge of data with their increased 

use across scientific fields and generation of large, high resolution datasets  (Chen and 

Zhang, 2014). With data availability growing, the need for tools that can automatically 

access information from different sources, then process and analyze the data to provide 
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meaningful results for environmental management, has become essential (Brodaricd 

Piasecki, 2016); Hey and Trefethen, 2005; Tarboton et al., 2014, Chen et al, 2016). 

Web services have become a popular method for automating access to scientific 

datasets. Web services are designed to communicate messages in a standardized format 

between computers over the Internet, allowing geographically separated computers to 

easily transfer data. Mineter et al. (2003) foresaw the need for the new generation of 

environmental applications to shift away from the desktop computer and toward more 

distributed resources interconnected through web services. Although web services are 

being employed for data access, they are also progressively being used to produce 

derived data through more advanced analysis, visualization, and modeling performed on-

demand based on user requests. Web service approaches have been proposed for various 

aspects of environmental applications including data analysis, visualization, and model 

simulation (Díaz et al., 2008; Granell et al., 2010; Booth et al., 2011; Feng et al., 2011; 

Goodall et al., 2011; Quiroga et al., 2012; Walker and Chapra, 2014). 

In recent years, several major federal agencies have begun to offer web services to 

access data stored on their servers. For example, the United State Geological Survey 

(USGS) has been making water data distribution and integration available via web 

services (Blodgett et al., 2016). Examples include the Environmental Protection 

Agency’s (EPA) Watershed Assessment, Tracking and Environmental Results System 

(WATERS) and the Storage and Retrieval and Water Quality Exchange (STORET), the 

USGS’s National Water Information System (NWIS) and StreamStats application, and 

the United States Department of Agriculture’s (USDA) Soils Data Access. The 

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) 

Hydrologic Information System (HIS) project proposed web service standards to improve 

hydrologic time series access, as well as software for both server and client side data 

management within a distributed HIS (Ames et al., 2012; Goodall et al., 2008; Horsburgh 

et al., 2010, 2009; Tarboton et al., 2014).  Standardization of web services makes 

automated data access from heterogeneous data sources easier by providing a common 

interface for communicating between clients and servers.  

The increased availability of standardized web services suggests that future 

Decision Support Systems (DSS) will be able to leverage common data, analysis, 
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simulation, and visualization resources on-demand to support decision makers (Choi et 

al., 2005; van Griensven et al., 2006; Buytaert et al., 2012; Harvey et al., 2012; Lu et al., 

2012; Laniak et al., 2013; Kumar et al., 2015; Galdiero et al., 2016). Although web 

services are commonly used now for data access within environmental DSSs as part of a 

preliminary, off-line data gathering step, there are significant advantages to having a 

distributed system where the services are used to integrate data on-demand. One key 

advantage of the data or calculations being offered through a web service is that 

erroneous services can be changed and all clients will have access to the corrected 

information without the need to install new client-side software (Buytaert et al., 2012; 

Goodall et al., 2011). This ability also raises a concern that reproducing past studies may 

be compromised due to unanticipated changes in underlying services. To address this 

concern, there would need to be clear and consistent ways to maintain versions of 

services and to alter users to updated services. Clever ways for archiving analyses 

including the data and models that can be used to reproduce the analysis will also be 

important. While admittedly more complex when dealing with distributed, service-

oriented systems, these challenges of versioning, computational reproducibility, and 

provenance exist whether using a distributed or centralized DSS architecture.  

Much of the prior research toward this vision has been directed at designing DSS 

web services themselves or evaluating architectures and their suitability for an 

environmental DSS (Matthies et al., 2007; Wagener et al., 2009; Sun, 2013). However, 

due to the growing complexity of modeling real-world environmental problems 

especially for the DSS, the rapid development in the web services could play a significant 

role for processing the increasing demands of required datasets to be requested in short 

time duration to support decision makers. The web service performance is one of the 

important aspect of these web services. As a result, it is important to examine the 

performance of available web services for supporting a distributed environmental DSS. 

The objective of this research is to assess the feasibility of building a distributed 

environmental DSS using existing, authoritative, national-scale web services in the 

United States. This objective is explored through a stormwater management application 

used to identify data needs and map those data needs to available web services. A series 

of experiments were conducted to measure the response times of the service requests for 
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different data access needs. The primary contribution of this research is to better 

understand the current state of web services for creating a distributed environmental DSS, 

and to identify potential bottlenecks where future research and development could be 

directed in order to speed up web services and move toward the vision of distributed 

environmental DSSs. With scrutinized examination of the feasibility of the current web 

services, it would be helpful to automate the time-consuming procedures of building 

environmental DSS, and it would be a critical step to the development of on-demand 

distributed environmental DSS. 

The remainder of this paper is organized as follows. The background section 

introduces web services and a stormwater management application used to design a set of 

experiments for testing the feasibility of an environmental DSS. The methodology section 

describes the web services used for the analysis, as well as the specific experiments used 

to test the services. This is followed by a results and discussion section where results 

from the individual experiments are presented and discussed in terms of performance, 

reliability, and variability. Finally, conclusions from the study findings are presented, 

along with suggestions for future research building from this study. 

2 BACKGROUND 

2.1 Web Services 

Web Services are defined as software systems designed to support machine-to- 

machine interaction over a network. There are two roles defined in a web service: a 

service provider and a service consumer or client. The service provider creates the web 

service, publishes access information, and registers what is available to the client. The 

client must find the web services and invoke them to access available information or 

features. Two common methods to implement web services are Simple Object Access 

Protocol (SOAP) and Representational State Transfer (REST). SOAP is a protocol or 

standard for exchanging structured information while REST is an architectural style. 

Applications that employ REST principles are called RESTful and were used for the web 

services tested in this study. To be called RESTful, applications must satisfy six 

constraints defined by Fielding (2000). These constraints include a separation of client 
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and server, a lack of client storage on the server between requests, and a uniform 

interface. 

RESTful services can be accessed by the client much the same way that internet 

browsers load web pages. Resources, such as information and data, are requested through 

a Uniform Resource Identifier which can be contained in a URL. Additional options such 

as response formats and search parameters would also be contained in the URL. A 

general workflow for web services involves the client first invoking the web service by 

sending a message or request to the provider over the network using a URL with all 

necessary identification information. The provider reads the message, obtains the 

requested information, and sends a message back to the client containing the requested 

information over the network. 

2.2 Stormwater Management Application 

2.2.1 Overview 

The stormwater management application is used to examin the feasibility of 

existing web services for data access within environmental distributed DSS. The 

application in this study is a prototype for Virginia, which could be potentially be applied 

to other study areas in the US. 

In Virginia, Virginia Stormwater Management Program (VSMP) regulations, like 

other state regulations, require construction projects to account for stormwater runoff 

impacts from increased impervious surfaces in order to prevent erosion, flooding, and 

water quality impacts. Organizations have traditionally constructed onsite stormwater 

Best Management Practice (BMP) structures, such as detention ponds or bioretention 

facilties, to mitigate these stormwater impacts. Recently, changes to the regulations allow 

for nutrient credit purchases as an alternative to onsite BMP construction. This new 

option allows pollutant dischargers to purchase credits from off-site sources to offset 

what would be treated onsite.  

To qualify for the use of nutrient credits, a project must meet one of the following 

criteria determined by the Code of Virginia § 62.1-44.15-35. First, the project area must 

contain less than 5 acres of disturbed land. Second, the post-construction phosphorus 

control requirement must be less than 10 pounds per year. Third, if the first two criteria 
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are not met and if the applicant can demonstrate onsite control of at least 75%, the 

remaining required reductions can be met through the purchase of nutrient credits. If the 

project discharges into a local watershed with an established nutrient TMDL, nutrient 

credits may still be purchased provided that the use of the credits do not prevent 

compliance with the local limitation. 

There are several calculations needed to check whether or not a project meets the 

eligibility criteria. A key calculation is the determination of the amount of phosphorus 

generated by the site. Traditionally, this is done using the procedure described in the 

Virginia Runoff Reduction Method (VRRM) using general site information, such as total 

acreage, soil types, land cover, and BMP types, and a regression equation to estimate 

phosphorus runoff. An alternative method is to use a surface water model, such as TR-20, 

to estimate runoff and pollutant loads. The model requires the drainage area, curve 

numbers, and concentration times which can be calculated from land use, soil, and 

elevation data for the watershed.  

This stormwater management application offers a typical example of data needs 

within environmental DSS. While each application will have unique needs, many will 

require soil, land use, watershed, and stream properties like this use case. Such works of 

examing the feasibility of using existing web services for on-demand data access is 

essential for building on-demand distributed environmental DSS in the future. Despite 

this being a fairly simple analysis, it still requires a broad set of input data from a variety 

of data providers, as described in the following section. 

2.2.2 Workflow and Data Description 

The workflow and summary of data needed to enable the example application are 

provided in Figure 1 and Table 1. The first step is to gather site information. It is assumed 

that the user will provide some of the inputs to the application, including the coordinates 

of polygon vertices and the project boundary, while the hydrologic unit code (HUC) and 

nutrient total maximum daily loads (TDML) of the site could be obtained from the EPA 

WATERS. Other location information (i.e. project area, disturbed acreage, latitude, and 

longitude) is to be provided by the user. The second step is to build the pollutant runoff 

model. The required data for this step includes annual rainfall for the project site along 
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with land cover, soil, and watershed information. These data could be gathered from EPA 

WATERS, USGS StreamStats and USDA Soils Data Access. The third step is for the 

user to provide the pricing and bank locations for nutrient credit purchasing. These data, 

combined with the outputs from the model in step 2, provide the decision-makers with 

actionable information that can be used to decide whether to purchase nutrient credits or 

build an onsite structural BMPs. The following section describes these web services and 

how they can be used for data access to support the stormwater management application. 

 

Figure 1. Workflow of the stormwater management DSS application. 
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Table 1. Information needed to support the stormwater management DSS application. 

Steps 
Required 

Information 
Data Needed Source Web Service 

1. Site 

Description 

Location 

Information 

Project Area User input n/a 

Disturbed Area User input n/a 

Location 

(City/County) 
User input n/a 

Latitude and 

Longitude 
User input n/a 

4th Order HUC NHD WATERS 

Nutrient TMDL 303(d) List WATERS 

2. Model 

Building 

VRRM Data 

Inputs 

Annual rainfall 
Watershed 

characteristics 
StreamStats 

Land Cover NLCD No 

Soils Information SSURGO 
Soils Data 

Access 

TR-20 Data 

Inputs 

Drainage Area 
Watershed 

boundary 
StreamStats 

Channel Length NHD WATERS 

Rainfall Amount 
Watershed 

characteristics 
StreamStats 

Soils Information SSURGO 
Soils Data 

Access 

Land Cover NLCD No 

3.Actionable 

Information 

Pricing  User input n/a 

Bank 

Locations 
  User input n/a 
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2.3 Service Descriptions 

Three service providers are available to provide many, but not all, of the data 

required to build a DSS for the example application (Table 1): EPA WATERS, USDA 

Soils Data Access, and USGS StreamStats. Each of the services are maintained by a 

federal agency and are open for public access.  

2.3.1 EPA WATERS 

EPA’s Watershed Assessment, Tracking and Environmental Results System 

(WATERS) provides water quality information from various EPA sponsored programs 

and links it to the national surface water network (Environmental Protection Agency, 

2015). The surface water network is based on the National Hydrography Dataset Plus 

(NHDPlus). Users can locate dischargers, view water quality monitoring results, impaired 

water reports, and perform general stream navigation. The web services made available 

by WATERS also expose components used to perform complex analyses on the 

supporting datasets, such as NHD, NHDPlus, and the Watershed Boundary Dataset 

(WBD). Included in these services are the point indexing service and the 

upstream/downstream search service, among several others. The point indexing service 

links a coordinate location (expressed as a latitude and longitude) to the NHDPlus flow 

line network. The upstream/downstream search service provides the ability to navigate 

upstream or downstream a user provided distance from a point on the network and returns 

a list with any events encountered during the traversal. 

2.3.2 USGS StreamStats 

StreamStats was developed by the USGS to provide users with several analytical 

tools that are useful for water resource planning, engineering, and design purposes 

(United States Geological Survey, 2016). The web services provided through StreamStats 

can be accessed using the StreamStats service browser interface or simply through a web 

browser. The URL for a service request includes the service name, inputs required by the 

service, optional response formats, and what parameters the client wants to include in the 

output. These services allow the client to obtain the basin boundary, characteristics, and 

streamflow for a selected location on a stream network. 
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StreamStats is built partly on ArcHydro, a data model and tools for hydrologic 

data processing within a Geographic Information System (GIS) (Maidment, 2002). 

Access through the network is provided though ArcServer. Elevation data is derived from 

the National Elevation Dataset (NED) and adjusted so that the stream channels 

correspond to those represented in the high-resolution version of the NHD, and so that 

watersheds correspond to those delineated in the WBD. After basin characteristics are 

measured, values are input to the National Streamflow Statistics Program, which is a 

program that uses USGS regression equations to estimate streamflow statistics for points 

along the river network. 

2.3.3 USDA Soils Data Access 

USDA’s Soil Data Access web services were developed in order to meet 

objectives that were not being met by the Web Soil Survey and the Geospatial Data 

Gateway (United States Department of Agriculture, 2016). One of the objectives was to 

provide a way to request the data for an area of interest of any size in real-time. 

Currently, the Soil Data Access services return spatial and tabular data using separate 

requests. The spatial data request requires the user supply an area of interest. The tabular 

data request takes as input a set of map unit keys and returns the desired tabular data for 

those map units. 

Soils Data Access offers several options for accessing the spatial and tabular data. 

Users can access tabular data via SOAP or REST/POST requests. Instead of tabular data, 

users can request spatial data using different coordinate systems including WGS84, 

NAD83, UTM, and Web Mercator. The tabular service includes a RunQuery method that 

returns XML data for one or more SQL statements. The spatial services follow the Open 

Geospatial Consortium (OGC) Web Feature Service (WFS) standard and include 

GetCapabilities, DescribeFeatureType, and GetFeature. For this study, the GetFeature 

method using the WGS84 coordinate system was used. Two layers accessible through the 

GetFeature method are the mapunitpoly and mapunitpolyextended layers. The 

mapunitpoly layer contains identifying information about soil map units and the 

mapunitpolyextended layer contains more specific information like Hydrologic Soil 

Group, moisture, and slope. 
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3 METHODS 

Five experiments were designed to test response times for essential data access 

queries required in the stormwater management application described earlier. Key 

parameters for each query were varied to measure their impact on response time. 

Experiment 1 was designed to test how the USDA soils web services responded to 

increasing study area sizes. Experiment 2 was designed to test how the distance between 

the project location and the river affected response times for the point indexing service 

from WATERS. Experiment 3 was designed to test how the downstream search distance 

affected response times for WATERS’ upstream/downstream search service. Experiment 

4 was designed to test how the size of the watershed affected response times for 

StreamStats services. Finally, experiment 5 was designed to test how the client’s location 

affected response times for all of the services. Details of the steps taken within each 

experiment are described in the following subsections.  

All experiments were run using virtual machines (VMs) provided through 

Amazon Web Service’s (AWS) Elastic Compute Cloud (EC2), specifically the t2.micro 

instances and the Ubuntu Amazon Machine Image (Table 2). The t2.micro instance 

features high frequency Intel Xeon processors, and has a burstable performance that 

constantly provide a baseline CPU performance but have the ability to burst above the 

baseline when required. There are no bandwidth limit for the t2.micro instances 

(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html). The 

specification of the t2.micro instances are shown in Table 2. AWS allows VMs to be 

created in one of three AWS server hosting locations in the US: Northern Virginia., 

Oregon, or Northern California. Unless specified, all experiments were conducted using 

VMs located in Northern Virginia. Once the VM was running, Python scripts for each 

experiment were moved to the VM’s local directory and run from the command line. The 

urllib2 library was used to request URLs within the Python scripts. Timers, from the time 

library, were set before and after the URL request was made and returned. The service 

response time was defined as the difference between when the URL request was made 

and when the response was returned. Results were output to a comma-separated file that 

was saved on the VM. Each experiment was run multiple times to access the variability in 

service requests. After copying the result files to a local computer, Python’s Pandas 
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library was used to analyze the data and the matplotlib library was used to visualize the 

data. Bar charts with error bars were made for each experiment to show the mean and one 

standard deviation around the mean for the response times.  

Table 2. AWS EC2 t2.micro specification. 

Model vCPU CPU Credits/hour Memory (GiB) Features 

t2.micro 1 6 1 

High Frequency Intel 

Xeon Processors, 

Burstable CPU 

CPU Credit: One CPU credit is equal to one vCPU running at 100% utilization for one minute. 

 

One-Way Analysis of Variance (ANOVA) was used to test the null hypothesis 

that population means for the response time between several groups were equivalent. If 

this null hypothesis is accepted, then all groups are considered statistically similar. 

However, if the null hypothesis is rejected, then at least one of the groups is significantly 

different than the others. ANOVA tests do not indicate which group is different; 

therefore, a post hoc test was required. The Tukey Honest Significant Differences (HSD) 

test was used to identify groups whose differences exceed the expected standard error, 

indicating which group is significantly different. Both of these statistical analyses are 

available through the R software package, which is widely used for statistical computing 

and graphics (R Development Core Team, 2008). The ANOVA tests and the post hoc 

testing using the Tukey HSD method were completed using R version 3.3.1 and an alpha 

level of 0.05. 

3.1 Experiment 1: Soils Data Access 

In order to conduct experiment 1, two URL requests were made: one for the 

mapunitpoly service and one for the mapunitpolyextended service. The parameters 

specified in both requests are summarized in Figure 2. Both URLs request the GetFeature 

method, output in GML2 format, projected into WGS84 coordinates, and the default 

service type and version for the Soils Data Access Service (Figure 2). The GetFeature 

method returns a feature collection for a layer for an area of interest. A bounding box 

defines the area of interest in this experiment. The coordinates for the bounding box were 
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varied to create polygons of 1, 10, 100, 1,000, and 10,000 acres to test the response times 

as the study area increases. As shown in Figure 3, the mapunitpoly service was requested 

first, followed by the mapunitpolyextended service after the mapunitpoly response was 

returned. The difference between these two services is in the number of attributes 

returned for each feature. The mapunitpoly service returns seven attributes per feature 

while the mapunitpolyextended service returns 44 attributes per feature. Each URL was 

called 25 times in this experiment to measure the variability in response times. 

 

 

Figure 2. URL parameters for the web services tested in experiment 1. 

 

Figure 3. Sequence diagram for web services tested in experiment 1. 
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3.2 Experiment 2: Distance from Stream Network 

Two URL requests were made in experiment 2: one for the point indexing service 

and one for the upstream/downstream search service. The point indexing method was set 

to RAINDROP mode in order to force downhill travel to the river network. The point 

geometry represents the starting location that could be a project’s most downhill point. 

The maximum indexing distance was set to the default value of 2 km as shown in Figure 

4. The OutputPathFlag was set to FALSE. The coordinates for the point geometry 

represent distances 0.5, 1, 2, 3, and 4 km away from the nearest, downhill flowpath. The 

upstream/downstream search service was given a start COMID value, a unique identifier 

for a feature within the National Hydrography Dataset (NHD), which was obtained from 

the output of the point indexing service.  

 

Figure 4. URL parameters for the web services tested in experiment 2. 

The stop distance was set to a constant 25 km from the initial point indexing 

location for all trials. The traversal summary was set to be downstream, mainstem (DM). 

The traversal summary, flowline summary, and 303d event summary lists were returned 

for all trials. The URL for point indexing was built and requested first. Upon return of the 

data for the point indexing service, the URL for the upstream/downstream search service 

was built and requested (Figure 5). Both URLs were requested 25 times for this 

experiment to measure the variability in response time. 
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Figure 5. Sequence diagram for the web services tested in experiments 2 and 3. 

3.3 Experiment 3: Stream Network Search Distance 

Two URL requests were made in this experiment: one for the point indexing 

service and one for the upstream/downstream search service. The URL parameters are 

summarized in Figure 6. The downstream search distance was varied between 1, 5, 10, 

25, and 50 km for the trials. All other variables used in experiment 2 were held constant 

in experiment 3. In contrast to experiment 2, the input point geometry was set to a single 

location that was constant for all trials. The service call and timing sequence remained 

the same as experiment 2 and are detailed in Figure 5. Each URL was requested 25 times 

for this experiment due to the longer response times of this experiment. 



 

 17  

 

Figure 6. URL parameters for the web services tested in experiment 3. 

3.4 Experiment 4: Watershed Properties 

Two URL requests were made in experiment 4: one for watershed delineation and 

the other for basin characteristics of the watershed. The URL parameters are summarized 

in Figure 7. The coordinates for x-location and y-location represent the latitude and 

longitude of a point on the stream network. For this experiment, the coordinates were 

varied to produce watersheds of 200, 800, 2,500, 25,000, and 110,000 acres. Both 

services offer options to include different lists in the output. The URLs shown in Figure 7 

detail the selected lists. Upon completion, the watershed delineation service returned a 

workspaceID. The workspaceID was used in the basin characteristics service to return 

specific watershed information. For this experiment, only a select number of basin 

characteristics were returned including: drainage area, annual average precipitation, 

minimum elevation, and National Land Cover Database 2011 land cover percentages. 

These characteristics were chosen using the includeparameters setting. The URL for the 

watershed delineation service was written, requested, and returned before the same 

process was initiated for the basin characteristics service so that only one service request 

was in process at any given time (Figure 8). The URLs were called 25 times. 
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Figure 7. URL parameters used for the web services tested in experiment 4. 

 

Figure 8. Sequence diagram for the web services tested in experiment 4. 

3.5 Experiment 5: Location of Server and Client Machines 

Virtual Machines (VMs) in three different geographic locations, Northern 

Virginia, Oregon, and Northern California, were used in this experiment as the client 

machine for making the service requests. Scripts for the USDA, EPA WATERS, and 

StreamStats services were started at the same time in the three different locations. The 

information about these web services, like server locations and specifications, are 

confidential and can be provided by the sponsored agency. These scripts were the same 

form as the first four experiments. The URL parameters were set to general values and 
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kept constant so that only the client location was varied for this experiment. The Soils 

Data Access service was bounded by coordinates representing an approximately 25,000 

acre polygon. All other parameters remained the same in experiment 1. EPA WATERS 

was given the same starting location as experiment 3. The downstream search distance 

was set to 25 km, the navigation type to downstream, mainstream, and the 303(d) event 

list was populated for all trials. Finally, the StreamStats watershed was the same one as 

the 2,500 acre watershed tested in experiment 4. The sequence for this experiment 

follows that of the first four experiments. The Soils Data Access and WATERS URLs 

were requested 25 times while the StreamStats URLs were only requested 25 times due to 

longer response times. Three VM’s were initiated, one in each geographic location, and 

Python scripts for the individual service to be tested were loaded onto the VM’s local 

directory. In order to minimize the effect of network traffic differences at the three 

locations, all tests in experiment 5 were run at approximately 1 p.m. Eastern time during 

a workday. Results were stored separately and copied into a single file after the scripts 

had completed.  

4 RESULTS 

 The results of experiment 1 show how the requested polygon size affects the 

response times for the Soils Data Access web services (Figure 9). For polygons 1,000 

acres and smaller, the requested information was returned in under one second for both of 

the layers requested. The response time is approximately three times slower for the 

mapunitpoly service and ten times slower for the mapunitpolyextended service when 

requesting data for a 10,000 acre polygon compared to the 1, 10, and 100 acre polygons.  

A one-way ANOVA showed that the polygon size did have a significant effort on 

response times for the mapunitpoly layer when comparing all five polygon sizes at the p 

< .05 level [Fcrit(4,120) = 2.45, F(4,120) = 1897.23 > 2.45, p ~ 0]. Post hoc comparisons 

indicated that the 1, 1,000, and 10,000 acre polygon sizes were significantly different 

from the others, but that the 10 and 100 acre polygon response times did not significantly 

differ. There was also a significant effect of polygon size on response times for the 

mapunitpolyextended layer at the p < 0.05 level [Fcrit(4,120) = 2.45, F(4,120) = 612.84 > 

2.45, p ~ 0]. Post hoc comparisons indicated that the 1, 10, and 100 acre polygon 
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response times were not significantly different from one another, while the 1,000 and 

10,000 acre polygons were significantly different.  

 

Figure 9. Average response times and standard deviations experiment 1. 

The results of experiment 2 show how the requested starting location, specifically 

the distance away from the stream network, affects response times for the EPA 

WATERS’ web services (Figure 10). There was approximately a 25% increase in 

response times for points 3 - 4 km away from the stream network when compared to the 

points 0.5 - 2 km from the stream network. The point indexing service took 1 – 2 seconds 

longer than the upstream/downstream search service. A one-way ANOVA used to 

compare the effect of initial distance from a flowline on response times for WATERS 

services showed there was no significant effect of starting coordinates on the response 

times for the upstream/downstream search service at the p < 0.05 level [Fcrit(4,120) = 

2.45, F(4,120) = 1.04 < 2.45, p < 0.389]. The upstream/downstream search service 

returned times just under 1.5 seconds. There was a significant effect of starting location 

on response times for the point indexing service at the p < 0.05 level [Fcrit(4,120) = 2.45, 

F(4,120) = 8.59 > 2.45, p ~ 0]. Post hoc tests indicated that the 0.5, 1, and 2 km distances 

were not significantly different from one another, and that the 3 and 4 km distances were 

not significantly different from one another.  



 

 21  

 

Figure 10. Average response times and standard deviations experiment 2. 

The results of experiment 3 show how the requested downstream search length 

affects response times for the EPA WATERS web services (Figure 11). The 50 km 

search distances took approximately seven times longer to return compared to the 1 km 

search distances. The ANOVA indicated that the response times for the point indexing 

service were not significantly different at a p < 0.05 level [Fcrit(4,120) = 2.45, F(4,120) = 

0.26 < 2.45, p < 0.901]. However, there was a significant effect of search distance on 

response for the upstream/downstream search service at a p < 0.05 level [Fcrit(4,120) = 

2.45, F(4,120) = 56.66, p ~ 0]. Post hoc tests indicated that the 1 and 5 km response times 

were not significantly different from each other and that the 25 and 50 km response times 

were not significantly different from each other.  
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Figure 11. Average response times and standard deviations experiment 3. 

The upstream/downstream search service starts at coordinates on a flowline and 

then travels a specified distance downstream and outputs events that are encountered, in 

this case any 303(d) listings. To determine if response times were due to more events 

being encountered and therefore the message size increasing, the response message size 

was also recorded (Table 3). Internet speeds were on the order of 10 – 100 Mbits/second 

for the t2.micro machine. The approximately 54 kB increase in message size between the 

1 km and 50 km search distance would only justify an increase of 0.005 to 0.05 seconds 

in response time, thus the increasing message size was not a significant cause for the 

increased response time. 

Table 3. Returned file sizes for Experiment 3. 

Service Search Distance File Size (kB) 

Point Indexing 

1 1.5 

5 1.5 

10 1.5 

25 1.5 

50 1.5 

Upstream/Downstream 

1 5.3 

5 8.6 

10 11.6 

25 34.1 

50 59.2 
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The results of experiment 4 show how the size of the delineated watershed affects 

response times for the StreamStats web services (Figure 12). Response times were 

relatively constant despite the fact that the watershed size increased substantially. This 

was validated with the ANOVA test at a p < 0.05 level [Fcrit(4,120) = 2.45, F(4,120) = 

.493 < 2.45, p < 0.741] for the watershed delineation service as well as for the basin 

characteristics service [Fcrit(4,120) = 2.45, F(4,120) = 1.784 < 2.45, p < .137]. The 

watershed delineation responded in around 40 seconds while the basin characteristics 

were returned within 15 – 20 seconds for all watershed sizes tested. Despite scaling well 

to increasing study area sizes, these services were the slowest of the ones tested by a 

factor of nearly ten. 

 

Figure 12. Average response times and standard deviations experiment 4. 

The results of experiment 5 show how the client’s location affects response times 

for all service providers tested (Figure 13). ANOVA tests indicated that all services tested 

were significantly affected by the client location at the p < 0.05 level. The Northern 

Virginia location had longer response times for the Soils Data Access services and for the 

StreamStats services when compared to the two western U.S. locations. However, it had 

shorter response times compared to the two western locations for the WATERS services. 

Post hoc testing indicated that the two locations in the western United States were not 

significantly different for most services, except for the soils services, with the Northern 

California location returning responses more quickly than the Oregon location.  
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Figure 13. Average response times and standard deviations experiment 5. 

5 DISCUSSION 

5.1 Performance of Services 

To provide some context for the response times for each of these services, Nielsen 

(1994) presents three thresholds for web application response times. At and below 0.1 

seconds, the user feels that the application is reacting instantaneously. One second 

represents the limit to keep user’s attention uninterrupted, although the delay is 

noticeable. Ten seconds is the limit for keeping a user’s attention on the application. 

Returns longer than ten seconds should have some type of progress icon or offer 

asynchronous capabilities. In a more recent update, Nielsen (2014) stands by his usability 

recommendations as they are based on user experience and not the performance of an 

application.  

It is important to keep in mind that these services are automating complex and 

tedious tasks that, when traditionally performed with desktop computers, and can take 

several minutes and even hours to complete depending on the size of the data and number 

of processing steps required. Thus, while ten seconds may seem very quick for 

performing a task like watershed delineation, in a distributed, on-demand DSS, having a 

response within ten seconds would allow for a more interactive user experience compared 

to waiting longer for the response. It is also important to be clear that not all 

environmental DSSs will require on-demand instantaneous responses. For example, 
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groundwater management DSSs (Le Page et al, 2012) may often not require 

instantaneous responses because waiting tens of minutes or even an hour for on demand 

data access and integration will not impeded decisions based on the model results. 

However, the availability of on demand systems can have a significant benefit for DSSs 

that support more dynamic systems such as reservoir operation, pump station operation 

and flood warning systems (Abebe et al, 2005; Savic et al, 2001).  

Based on the study results, the two Soils Data Access web services had the 

shortest response times. In most cases, except for the 10,000 acre study area, both 

services returned before the one second threshold. The mapunitpoly service consistently 

returned faster than the mapunitpolyextended service, with the difference increasing as 

the size of the polygon increased. The two WATERS services tested were the next fastest 

services to return. The point indexing service was slower than the upstream/downstream 

search service. However, as the downstream search distance increases, the two services’ 

response times approached each other. The two StreamStats services were the slowest to 

return of the ones tested with both being over the ten second threshold for the watershed 

sizes tested. 

To reiterate, the experiments were designed to attempt to identify parts of the 

services where potential bottlenecks may occur, along with general response times for the 

services. The most obvious impediment to an on-demand DSS in the services tested 

would be the response times for the StreamStats web services. However, these services 

are also performing arguably the most significant data processing before returning 

information to the user. Innovative methods to speed up these services, such as new 

watershed delineation algorithms, would benefit on-demand applications. Another area 

for improvement would be for soil data requests for large areas. The Soils Data Access 

mapunitpolyextended service took six times longer to obtain soils characteristics for 

10,000 acre study areas when compared to 1,000 acre study areas. For the application that 

motivated this study, projects would most likely be less than 1,000 acres, however, other 

use cases may require soil data for larger areas. Although the initial distance away from 

the stream network does affect response times, the effect is small relative to other 

response times. However, the search distance downstream should be considered within a 

DSS utilizing these services. The response times were almost seven times longer for a 50 
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km search distance when compared to the 1 km search distance. Therefore, it may be 

necessary to maintain a maximum downstream search distance that users cannot exceed.  

 For all six web services, but especially the two provided by StreamStats, there 

was a significant difference between response times from client VM’s located in different 

parts of the country. This result suggests that efforts to direct service requests to more 

nearby servers could have a significant impact on response times. Other factors such as 

network traffic may also be playing a role in these results, however, and further testing 

could better pinpoint the exact cause for these delayed response times. However, what 

can be taken away from the experiment is that the client’s location affects web service 

response times in a somewhat surprisingly significant way. For example, the watershed 

delineation service offered by StreamStats experienced a 34 % reduction in response 

times when the client was located in the western United States compared to the eastern 

United States (Figure 13).  

5.2 Variability and Reliability of Services 

StreamStats services’ standard deviations exceeded 1 second in all cases (Figures 

12 & 13). However, when comparing the average coefficients of variation (CV), where 

the standard deviation is normalized by the mean, the StreamStats services were the least 

variable with an average CV of 0.13. WATERS services’ deviations ranged between 0.2 

and 1 second (Figures 10, 11 & 13) with an average CV of 0.22. Soils Data Access 

services were consistently under 0.2 seconds for most trials (Figures 9 & 13) with an 

average CV of 0.17.  

Reliability concerns that affect DSS implementation include timeouts and no data 

or wrong data returns. In addition to the requests made for the actual experiments, these 

services were also requested many times during set-up and code debugging. In total, 

hundreds of requests were made to each of the services and no timeouts or data errors 

were encountered. StreamStats is under active development with the USGS rolling out 

updates for each state and beta versions being tested, with one just being made available 

publically. In the past, WATERS has retired services that were considered obsolete or 

unpopular. This could become a problem if distributed DSSs depend on services for 

reproducing past studies and better ways to maintain or archive legacy services is an 

important area for future work. The Soils Data Access is taken offline for maintenance 
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from 12am to 4am Mountain time every night in order to complete updates. Overall, 

although no issues were specifically encountered during testing, these are factors that 

need to be considered before using these web services within production systems.  

5.3 Remaining Barriers to Achieving the On-Demand Environmental DSS 

In regards to an environmental DSS to support the stormwater management 

application, there are several areas that need attention. The first area is required data that 

is unavailable or not easily obtained through web services. We were unable to find an 

authoritative web service for land cover data. StreamStats does provide some land cover 

derived data within its basin characteristics service. However, this is not consistent for all 

states.  

Other data needed for the scenario were more localized data such as the locations 

of nutrient credit banks, amount of available credits, and pricing. Although federal data 

providers are making increased use of web services and their adoption at local 

governmental levels is growing for standardized data like geospatial data layers, more 

specialized datasets without well-established standards are still a work in progress. For 

example, nutrient credit pricing is localized information that would be ideal for access 

through a web service. Prices may change frequently, but as long as the information was 

updated by the service provider, the consumer (in this case a project manager interested 

in purchasing credits) could make a request using web services and be provided with 

current and accurate information.  

Another area for improvement is to the service response times. The USDA web 

services are suitable for use within a distributed DSS because their response times were 

consistently below 1 second for most tests. It is only when the study area becomes very 

large (10,000 acres in our analysis) that the service slows to a point where on-demand 

access is no longer practical. The WATERS services returned responses within 5 – 6 

seconds typically, except in the cases where the downstream search length was below 5 

km or above 10 km. These response times could also be acceptable for on-demand 

access, especially if there is a progress bar for users. StreamStats response times were too 

long for an on-demand application (often over 40 seconds for the watershed delineation). 

Although StreamStats services are performing complex calculations that would take 

significant time if performed manually, they are not yet at the point where on-demand 
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applications can make use of the services without an effort to make sure users stay 

engaged during the waiting time (Nielsen, 1994).  

In order to create an environmental DSS using on-demand web services, the 

response times for the services should improve and more attention should be paid to 

methods for speeding up complicated analysis services like those provided through 

StreamStats or Soils Data Access for large areas. As the use and demand for these 

services continues to grow, organizations will continue to invest in making the services 

more responsive and user friendly. One approach for improving response times may be 

simply to run the services on larger physical servers. Another approach would be to take 

advantage of recent advances in cloud computing services that allow for dynamic scaling.  

Dynamic scaling can automatically provision resources for web applications based on 

demand allowing services to be highly responsive without large upfront resource 

investments. Other enhancements, such as replicating web services at different 

geographical locations or reducing message sizes between clients and servers, could 

significantly improve response times. For example, Experiment 5 demonstrated that the 

location of the client compared to the server resulted in a consistent 10-20% difference in 

response times and in some cases as much as a 50% difference in response time.  

6 CONCLUSIONS 

This research explored the feasibility of using available web services from federal 

agencies to support a distributed environmental DSS with on-demand data access. The 

popularity of web applications has given rise to web services as a new area for 

information dissemination due to the benefits offered in interoperability, access, and 

standardization. Previous work has been done on using web services for data access, 

analysis, visualization, and simulation of environmental processes. Most of the work has 

been focused on the design or implementation of the services themselves. There has been 

less work on examining the services’ performance for building a distributed 

environmental DSS application. A stormwater management application was used to 

define typical service requests for an environmental DSS. Experiments were designed to 

test potential bottlenecks for service requests from the three major federal agencies. 
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The Soils Data Access services averaged response times below one second for 

study areas 1,000 acres and below. The WATERS services responded in between 4 – 7 

seconds. The initial distance away from the stream network did not impact response times 

as much as the downstream search distance. The StreamStats services responded in 40 

seconds on average for basin delineations and in between 15 – 30 seconds for the basin 

characteristics, depending on the number of parameters requested. The StreamStats 

service response times were relatively constant for increasing watershed sizes. Client 

location did have an effect on the response times for all three services with generally a 

difference of 12 - 25% and as much as 34% in response times. 

The variability in response time for the same service call repeated at different 

times ranged from less than a tenth of a second to a few seconds, depending on the 

service. Coefficients of variation for the experiment trials ranged between 5 – 70%, but 

were generally below 30%. Reliability concerns stemming from timeouts or requests not 

being returned were not encountered. The USDA web services are already suitable for a 

distributed environmental DSS due to their short response times for typical project study 

areas. The WATERS services are suitable as well, however additional improvement in 

response times and variability would be beneficial in order to reduce response times 

below a one second. The StreamStats services are less suitable for a distributed DSS 

application due to long response times of over 40 seconds. When using the StreamStats 

service for watershed delineation and characterization, a progress bar or asynchronous 

communication would be necessary to keep users engaged. 

Although the services tested are making progress toward the long term vision of 

distributed environmental DSSs, there are opportunities for future research and 

development. Future work should be devoted to creating new web services needed for 

environmental DSS applications. For example, services for land use and land cover data 

and more localized information are needed. There is also a need for improvement to the 

algorithms supporting more rapid watershed delineation, especially for small watersheds. 

Web services providers may also benefit from geographically distributing their services 

or reducing message sizes in order to handle requests from different parts of the country 

more quickly, since this was also found to be a significant factor in service response time. 

With these further advancements, web services will be able to better fulfill the longer-
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term vision of distributed DSSs with on-demand access to data, analysis, and 

visualization routines. 
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