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Abstract

In urban areas it is important to have spatially and temporally dense rainfall measurements for flood

modeling, monitoring, and prediction. The objective of this paper is to quantify the effect of rain

gauge proximity on area-averaged rainfall estimation for small (<1km2) problematic urban watersheds

in Virginia Beach, VA USA. To achieve this, rainfall was estimated by including and then excluding

nearby rain gauges from a Kriging analysis. This was done for seven focus watersheds draining to flood

prone areas in Virginia Beach for the 20 days with the highest total rainfall depth during the period

07/02/2013 to 01/01/2016. Results show that including local rain gauges in the Kriging analysis

resulted in an average percent difference in area-averaged rainfall of close to 60% at a 15-minute time

step (24.5 mm max) and 20% at a daily time step (55.6 mm max) across the focus watersheds. The

results suggest that a rain gauge within 0.5 km of the target watershed would be needed for flash

flood warning applications in Virginia Beach. NEXRAD-derived rainfall estimations were used for

comparison and showed significant differences from the rain gauge rainfall estimates greater than 20

mm over an hour (r=0.72, RMSE=9.72 mm)



Introduction

Coastal cities are becoming increasingly vulnerable to flooding (Nicholls and Cazenave, 2010). Recent

extreme events, such as hurricanes and tropical storms, have caused severe damage, costing major

coastal cities billions of dollars and thousands of lives (Kates et al., 2006; Galarneau et al., 2013).

In addition to extreme high return-period events, small return-period rainfall events can also cause

flooding in highly urbanized coastal cities and, while less dramatic, these floods can incur significant

economic and social costs (Suarez et al., 2005). These lower return-period floods have been occurring

more frequently in coastal cities in recent years due to climate change and sea level rise (Ezer and

Atkinson, 2014; Sweet et al., 2014). Coastal cities typically have very low topographic relief, large

portions of impervious surfaces, a high water table, and tidal influences, which combine to make

drainage problematic even without the effects of sea level rise (Titus et al., 1987). Rising sea levels

exacerbate drainage problems in coastal cities as tide and groundwater levels rise with the sea level

(Bjerklie et al., 2012; Rotzoll and Fletcher, 2012). To add to the flooding problems coastal cities face,

precipitation events in general are projected to increase in intensity due to climate change (Alexander

et al., 2006; O’Gorman and Schneider, 2009). To understand and accurately forecast flooding in

urban, coastal environments, spatially and temporally detailed rainfall data are needed (Smith et al.,

2007), but usually unavailable (Hill, 2015). The typical urban watershed is small in area and has a

large proportion of impervious surfaces. This results in a short runoff response time, which increases

the risk of flash flooding (Hall, 1984; Fletcher et al., 2013).

Often, neither rain gauge networks nor weather radar can provide rainfall measurements at spatial

and temporal resolutions needed to make accurate flood forecasts for urban environments (Hill et al.,

2014); rain gauge networks are generally too coarse spatially to provide such detailed information

(Seo, 1998). The typical weather radar rainfall product has a spatial resolution of 2 km or coarser

(Krajewski and Smith, 2002; Nesbitt and Anders, 2009), which may also be too coarse for urban

hydrology applications (Smith et al., 2007). Furthermore, weather radar measurements are indirect

requiring an empirically-derived relationship between reflectivity and actual rainfall on the ground

(Smith and Krajewski, 1993), and is therefore inherently uncertain to some degree. Efforts have been

taken to blend rain gauge and weather radar data (Ercan and Goodall, 2013; Velasco-Forero et al.,

2009; Seo, 1998; Sun et al., 2000), but spatially detailed and accurate rainfall data often remain a

limiting factor in research and flood forecasting (Hill et al., 2014). To increase the spatial coverage

of rainfall estimation, less traditional technologies such as measuring signal attenuation between cell



phone towers (Overeem et al., 2013; Zinevich et al., 2008) and using simple, more widespread binary

rainfall sensors (Hill, 2015) have recently been evaluated, but are still not widely used and, like radar,

do not directly measure rainfall.

Although it is generally accepted that spatially and temporally dense measurements are needed to

capture storm events relevant to urban hydrology, the degree of spatial and temporal density required

is uncertain. Rainfall spatial variability and its effect on hydrology have been studied using both rain

gauge networks (Pedersen et al., 2010; Serinaldi, 2008; Jensen and Pedersen, 2005) and weather radar

(Krajewski et al., 2003; Smith et al., 2007). Ciach and Krajewski (2006) used 25 rain gauges stations

in a 3 km X 3 km grid to observe small-scale spatial and temporal rainfall variation. In their findings,

rainfall exhibited high spatial variability with correlation coefficients decreasing between rain gauges

at a 4 km separation distance and a 15-minute time step; the correlation coefficients were lower at a 5

minute time step. Emmanuel et al. (2012) analyzed rainfall radar images finding rainfall patterns to

be very spatially heterogeneous with decorrelation distances (the distance at which minimal spatial

correlation between two points exists) as low as 5 km. Berne et al. (2004) used geostatistics with

rain gauge and an X-Band weather radar data to suggest a simple empirical relationship between

watershed area and the corresponding necessary temporal resolution of rainfall observations. They

then related the temporal resolution to the needed rain gauge spatial resolution. Their findings

suggest that watersheds with areas less than 1 km2 should have rainfall measurements at about a 3

min temporal resolution and a 2.5 km spatial resolution.

The objective of this paper is to quantify the effect of rain gauge proximity on area-averaged

rainfall estimation for small (<1 km2) problematic urban watersheds in a coastal environment using

Virginia Beach, VA USA as a case study. Previous studies, as described above, have tended to

focus on describing the temporal and spatial characteristics of rainfall generally. This paper adds

to the topic by exploring the ability to estimate rainfall for specific urban watersheds with known

flooding problems using available rain gauge networks. This paper also presents a general method to

determine how proximity of rain gauges to a watershed impacts the areal averaged rainfall estimates

for that watershed. First, the station nearest to each focus watershed is removed from the Kriging

interpolation routine to measure the difference in area-average rainfall estimated including and then

excluding this nearby station. Cheng et al. (2012) also used a method of systematically removing

stations from a Kriging rainfall interpolation procedure, but did not focus on quantifying the impact

for estimating rainfall over known problem watersheds. Second, the benefit of rain gauge proximity



in areal rainfall estimation is further explored by iteratively removing the next nearest rain gauge to

the target watershed in the rainfall estimation procedure. This analysis reveals the benefits of having

rain gauges within a given distance of the target watershed. Each scenario is conducted for rainfall

observations over three different time scales, 15 minutes, hourly, and daily to understand how these

time scales factor into the rainfall estimation for the focus watersheds.

The remainder of the paper is organized as follows. First, the methods and data used to assess

the effect of rain gauge proximity on flood prone watersheds in Virginia Beach are described. Second,

the results are presented and discussed in terms of the benefit of nearby rainfall observations on

watershed rainfall estimation. For context, the results are compared to NEXRAD-derived rainfall

estimates as an alternative means for generating area-averaged rainfall estimates. Finally, conclusions

and recommendations drawn from this study area are given.

Methods

Study Area and Focus Watersheds

Virginia Beach is the most populous city (pop. 450,980) in the Commonwealth of Virginia (U.S.

Department of Commerce, 2012). The study area is the most populated portion of Virginia Beach.

Shown in Figure 1, it is 370 km2, 57% of the total city area, and roughly the northern half of the city.

Specific road intersections with recurrent flooding problems were provided by city engineers and

public works division employees. The drainage area corresponding to each of these points was de-

lineated using a 1 m by 1 m resolution digital elevation model (DEM). These sub-watersheds are

shown in Figure 2 and their characteristics are given in Table 1. For each sub-watershed, the percent

imperviousness was obtained from the National Land Cover Dataset 2011 (Homer et al., 2015) and

the average slope was calculated from the DEM.

Table 1: Focus watershed areas

Area Imperviousness Ave. Slope

ID Description (km2) (%) (%)
WS-1 Shore Dr & Great Neck Rd 0.76 59 4.7
WS-2 Shore Dr & Red Tide Rd 0.15 69 0.6
WS-3 Ocean View Ave & Mortons Rd 0.02 43 5.3
WS-4 S. Rosemont & S. Plaza Tr 0.13 61 3.9
WS-5 S. Rosemont & Clubhouse 0.26 26 4.4
WS-6 21st & Baltic 0.08 46 3.3
WS-7 Shore Drive & Kendall St 0.69 9 11



Figure 1: Study area, the northern portion of Virginia Beach.

Figure 2: Focus watersheds which drain into known flood prone locations.



Rainfall Data

Rainfall data measured at the Oceana Naval Air Station were used to select focus dates for the analysis.

The Oceana Naval Air Station rain gauge was used to select the dates because it is the only weather

station run by the U.S. National Weather Service located within the study area. The 20 days with the

highest daily accumulated rainfall at the Oceana Naval Air Station were selected as focus dates for

the analysis. For these dates, precipitation data were obtained from three different sources: The City

of Virginia Beach, Hampton Roads Sanitation District, and Weather Underground. Figure 3 shows

the daily rainfall totals averaged over all of the rain gauges from the three data sources for the 20

focus dates. The standard deviations of these averages are also shown to demonstrate the range in

rainfall variability in the 20 days analyzed.

Figure 3: Total daily rainfall averaged over all rain gauges for focus dates

The City of Virginia Beach (CVB) in the past five years has installed a rain gauge network con-

sisting of 14 stations. Precipitation data from the 10 gauges within the study area were obtained for

the 20 days analyzed. The Hampton Roads Sanitation District (HRSD) has a network of over 50 rain

gauges in the Hampton Roads region, 12 of which are within the study region. The data from these 12

gauges, which are quality controlled by the HRSD, were also obtained for the 20 days analyzed. Rain-

fall data were also obtained from Weather Underground (WU) (http://www.wunderground.com/).

WU includes more than 100,000 personal weather stations, purchased and maintained by with their

data accessible through the WU site. There were between 7 and 21 WU personal weather stations

that reported rainfall values in the study area for the 20 days examined; that corresponds to a 32-



95% increase in the number of rain gauges in the study area. Increased spatial coverage has obvious

benefits in better understanding spatially heterogeneous precipitation events. However, the data are

collected by individual citizen scientists without a quality controlling standard, therefore the validity

of the data is uncertain. The process for screening this dataset to identify invalid observations is

described in the following section.

Rainfall data from the three sources, CVB, HRSD, and WU, were observed at different temporal

resolutions. CVB and HRSD had measurement intervals of 5 and 15 minutes, respectively. Because

the WU rain gauges are owned by individuals, the temporal resolution of measurements at these

stations varied with an average of 6.2 minutes between observations. Three temporal resolutions were

used for the analysis: daily, hourly, and 15 minute. The finest resolution used in the analysis was

the coarsest of the three sources: 15 minutes from the HRSD data. The measurements at a temporal

resolution finer than 15 minutes were aggregated so that all of the measurements were on a consistent

same time scale. The measurements were also aggregated to hourly and daily time scales to study the

effect of the time scale on area-averaged rainfall estimation.

Analysis

Quality Controlling of Rainfall Data

The rainfall data from all three data sources were quality controlled first to identify stations not

functioning properly on the focus dates. If a station recorded a daily rainfall total of zero for any of

the 20 days analyzed, it was assumed that the station was not functioning properly and all values

from that station that day, were disregarded. Given that these were the 20 days with the greatest

total rainfall over the period of analysis, if a rain gauge did not record any rainfall it was assumed

that the rain gauge was not working on that day.

Because the WU data were considered to be less reliable for the reasons described above, these

data underwent a simple quality control procedure to identify potentially errant measurements on

a 15-minute time scale. At each station, inverse distance weighting (IDW) was used to predict the

rainfall based on recorded values from its neighboring CVB and HRSD stations. A minimum of three

CVB and HRSD stations, all within 5 km, were used for the estimation. For each 15-minute time

step, the IDW estimated value was compared to the value recorded at the WU station in question. If

the difference between the predicted value and the recorded value was greater than three times the

standard deviation of the measurements used for the IDW prediction, then that measurement was



flagged as an outlier. The measurement was also flagged as an outlier if the IDW predicted value was

greater than 10 mm and the recorded value was zero. This was to check for stations being off-line

intermittently during the focus dates.

The quality control procedure described above was also performed for the CVB and HRSD stations.

The number of outliers found from the CVB and HRSD stations served as a baseline against which

to compare the number of outliers recorded by the WU stations. If the number of outliers recorded

by a WU station was significantly higher than the number recorded by the CVB and HRSD stations,

it was judged that the outlying measurements recorded were not the result of real spatial variation,

but were the result of measurement errors. The data from the station were therefore disregarded.

Rainfall Interpolation using Kriging

Ordinary Kriging, which assumes a constant, unknown mean over the search neighborhood, was used

to quantify the importance of rain gauge proximity in estimating rainfall depth over the seven focus

watersheds. It would have been preferable to use Kriging with external drift (Kebaili Bargaoui and

Chebbi, 2009); however, this technique requires another related but independent variable such as

elevation (Goovaerts, 2000). In this case, since the study area is located near the coastal plane,

its elevation is effectively constant. A spherical model was used (Equation 1) for the Kriging semi-

variogram models where γ is the variogram, h is the lag, c is the sill, and a is the range. The semi-

variograms were assumed to be isotropic. The model parameters (sill and range) were automatically

optimized using the RGeostats package (Renard et al., 2015) in R and were calculated for each

individual time step with all available data. The Kriging process produced two outputs: the predicted

rainfall and the Kriging variance. Kriging variance is the variance of the predicted rainfall value and is

a measure of prediction confidence. Both of these outputs were produced as continuous raster datasets

and their values were averaged over the area of the focus watersheds to obtain area-averaged estimates

of rainfall and Kriging variance using the ArcGIS’s Zonal Statistics as Table tool.

γ(h) =


c
[
3
2
h
a −

1
2

(
h
a

)3]
if h ≤ a

c otherwise

(1)

Experiment 1: Removing the Nearest Stations to a Watershed To quantify the role of

nearby rain gauge stations in area-averaged precipitation estimates for the seven focus watersheds,

the rainfall was estimated with and then without the nearest quality controlled (from HRSD or CVB)



rain gauge station. Any WU rain gauges closer than the nearest quality controlled rain gauge were also

removed. For example, considering the watershed diagram in Figure 4; S2 would be excluded, being

the closest quality controlled station, and S1 would also be removed because it is a WU station closer

to the watershed centroid than S2. The number of rain gauges removed for each focus watershed and

the average distance of the removed rain gauges are shown in Table 2. The table also gives distances

for the next nearest station that was not removed in the analysis (i.e., S3 in Figure 4).

Figure 4: Diagram illustrating two Kriging experiments

Table 2: Gauges removed in Experiment 1. Distances are measured from watershed centroid.

ID Num.gauges removed Distances of removed gauges (m) Distance to next nearest station (m)
WS-1 3 318, 1419, 2288 2518
WS-2 3 153, 1624, 2340 2643
WS-3 1 1266 1605
WS-4 2 458, 466 1671
WS-5 2 380, 542 2414
WS-6 1 625 2449
WS-7 2 2645, 3016 4201



Two variables were calculated to quantify the impact of removing the nearby stations on rainfall

estimates. The first variable is the average increase in variance (∆Vari) and the second variable is

the average absolute difference in rainfall estimation (|∆Ri|). These variables were calculated using

Equations 2 and 3, respectively. In Equation 2, Vari(t)
′ is calculated the same way as Vari(t), the

variance of the estimated rainfall on watershed i at time t, but it is calculated without the nearby

station(s). Similarly Ri(t)
′ in Equation 3 is calculated in the same was as Ri(t), the estimated

rainfall on watershed i at time t, but without the nearest station(s). As shown in the equations, the

difference between Vari(t)
′ and Vari(t), and Ri(t)

′ and Ri(t) is averaged over all values in the time

series, t = 0, ..., N . Equations 2 and 3 were applied to each of the three time scales considered in the

analysis: 15-minute, hourly, and daily.

∆Vari =
1

N

N∑
t=0

Vari(t)
′ −Vari(t)

Vari(t)
(2)

|∆Ri| =
1

N

N∑
t=0

∣∣∣∣ Ri(t)
′ −Ri(t)

(Ri(t)′ +Ri(t))/2

∣∣∣∣ (3)

Experiment 2: Removing Stations at Increasing Distances from a Watershed A second

experiment was performed to quantify the effect of excluding rain gauge stations, at increasing dis-

tances from a watershed, on rainfall estimation for that watershed. For each focus watershed, the

nearest rain gauge to the watershed centroid was excluded from the rainfall estimation. Unlike Exper-

iment 1, there was no distinction made between stations from different sources in Experiment 2. After

the nearest station was excluded, the two nearest stations were excluded from the rainfall estimation.

This was repeated until all rain gauges within 8 km of the watershed centroid were excluded. Note

that the the cases in Experiment 1 are also contained in Experiment 2. Experiment 2, therefore, can

be thought of as an extension of Experiment 1. Similar to Experiment 1, in Experiment 2 the average

increase in variance (∆Vari) and the average absolute difference in rainfall estimation (|∆Ri|) were

calculated for the seven watersheds and the three time scales. However, while in Experiment 1 Equa-

tions 2 and 3 were applied using all stations in the study area, in Experiment 2 these equations were

applied using only a subset of the stations in the study area, i.e. with removing individual stations

up to 8 km from the watershed centroids as explained above.



Comparison with Weather Radar Data

Given that dense rain gauge networks are rare, and that weather radar products are much more

widespread (the vast majority of the continental United States is covered by NEXRAD radars), the

results of the analysis were compared to weather radar-derived rainfall estimates. The weather radar

data used for the comparison was the NEXRAD Level III product “DAA,” which is the one-hour

precipitation accumulation estimation produced using the Quantitative Precipitation Estimate (QPE)

dual-polarization precipitation algorithm which has 256 possible data levels (NOAA, 2017). This

product was selected instead of the one-hour precipitation accumulation calculated using Precipitation

Processing System (PPS) based on results from Wu et al. (2012) who found QPE to be generally more

reliable than PPS. The spatial resolution of the data was 0.24 km x 1.5 km grid. The NEXRAD data

were obtained for each hour of the 20 days analyzed and converted from native binary to a Geotiff

raster format using the NOAA Weather and Climate Toolkit. The Zonal Statistics as Table tool in

ArcGIS was then used to obtain the average value of the NEXRAD raster cells that intersected each

watershed. These area-averaged estimates were compared with the area-averaged estimates obtained

from the Kriging of the rain gauge data.

Results and Discussion

Quality Controlling Results

Results from the quality control showed that 8 of the total 44 stations recorded zero rainfall for at

least 12 of the 20 days analyzed (Table 3); 6 of these 8 stations were WU stations and 2 were HRSD

stations. WU station “KVAVIRGI105” had the most occurrences with 8 of the 20 days reporting zero

rainfall. Stations were excluded from the analysis for the day(s) that zero rainfall was reported. It

is possible that one rain gauge in such a large area would have had no rainfall even when most rain

gauges did. That said, on 8 of the 12 days on which zero rainfall was recorded somewhere in the study

area, zero rainfall was only reported at one rain gauge for the day. Since every other rain gauge was

reporting at least some rainfall for each of those 8 days, it was assumed that the one that recorded

zero rainfall was not functioning. On 3 of the 12 days, 2 stations reported zero rainfall, and on 1 day

(2015-09-30) 4 stations recorded zero rainfall. In these cases, since no two stations closest to each

other both reported zero rainfall, these stations were also assumed to be not functioning.

The results of the quality control procedure used to identify anomalous measurements from the



Table 3: Stations and dates where a value of zero rainfall was recorded

StationID Source Zero-sum Dates
KVAVIRGI71 WU 2014-09-13
KVAVIRGI79 WU 2014-09-13
KVAVIRGI88 WU 2015-09-30, 2015-10-02
KVAVIRGI105 WU 2014-11-26, 2015-04-14, 2015-06-02, 2015-08-07,

2015-08,02, 2015-09-30, 2015-10-02
KVAVIRGI116 WU 2015-09-30
KVAVIRGI65 WU 2015-09-30
MMPS-036 HRSD 2014-08-18, 2014-09-08, 2014-09-09
MMPS-160 HRSD 2014-04-14

Figure 5: Percent of outliers for each station

Table 4: Percentage of outliers for each data source

Data Source Average Percentage of Outliers (%)
CVB 4.5
HRSD 6.9
WU 8.6

stations are shown in Figure 5. From a total of 31,095 observations, 2,045 were identified as outliers.

More than 99% of the outliers identified were three or more standard deviations away from the

estimate based on their neighbors, compared to less than 1% which were recorded as zero when the

IDW estimate was 10 mm or greater. Eight of the top ten stations in terms of percentage of outliers

were WU stations. The WU stations had a higher average percentage of outliers overall (Table 4).

Only one station stood out statistically: “KVAVIRGI52”. The percentage of measurements classified

as outliers from this station was 3.6 standard deviations from the mean percent number of observations



classified as outliers when considering all stations. “KVAVIRGI52” was therefore excluded from the

analysis, while all other stations were kept.

Exploratory Analysis Results

Figure 6 shows the daily rainfall depths for each station across the study area. There are clear

differences in rainfall magnitude and spatial variation between dates. For example, considering the

daily total rainfall values for 2014-12-24, 2015-04-14, 2015-06-02, and 2015-06-24, it is clear visually

that the daily rainfall on 2015-06-02 is more spatially heterogeneous than the other dates. The data in

Table 6 confirm this quantitatively. These four daily totals are quite similar: 36.2, 32.6, 34.3, and 31.8

mm, respectively. However, their standard deviations are more variable: 8.9, 11.0, 23.9, and 10.8 mm,

respectively. The spatial variation seen visually in Figure 6 maybe best be explained quantitatively

by the standard deviation to mean ratio, or coefficient of variation (CV). Contrasting the plots of the

two dates with the lowest CV, 2014-04-15 (0.18), and the highest CV, 2015-08-20 (0.85), the spatial

uniformity on 2014-04-15 and the spatial non-uniformity on 2015-08-20 are clearly seen (Table 6).

Although the rainfall can be relatively spatially uniform for a given day, when considering a shorter

time step, the spatial variation is often much higher. This can be seen in the 15-minute and hourly

CVs which are, on average, at least four times higher than the daily CV (Table 5). Even the date

with the smallest daily CV, 2014-04-15 (0.18), shows considerable variability in rainfall amounts across

stations at the 15-min time step (CV up to 0.65 at 11:15:00; Figure 7). This variability on smaller time

steps is important to consider for flood forecasting applications in small, highly impervious watersheds

with flashy responses. The uncertainty caused by this variation could result in inaccurate predictions

about the potential for flooding risk.

Table 5: Average CV for the time steps examined

Time scale Average CV
15 minute 2.1
Hourly 2.0
Daily 0.5

Experiment 1 Results

The results of the rainfall estimation without local information are summarized in Figure 8. For

most of the watersheds, the variance increased by more than 100% and, generally, the magnitude of



Figure 6: Daily rainfall values at each station (size of the scatter points corresponds to relative
magnitude of rainfall)

the increase corresponded to the distance from the watershed centroid to the nearest excluded rain

gauge station (see Table 2). For example, the watersheds that had the greatest distance from their

centroid to the nearest rain gauge, WS-7 (2645 m) and WS-3 (1266 m), had the smallest increase

in variance when those rain gauges are removed. Conversely, the watershed that had the smallest

distance between its centroid and the closest rain gauge, WS-2 (153 m), had the largest increase in



Table 6: Summary data for daily rainfall

Date Mean (mm) Standard Dev. (mm) CV
2013-07-02 25.1 9.2 0.36
2013-10-09 68.8 19.9 0.29
2014-01-11 43.7 10.1 0.23
2014-02-13 28.0 7.7 0.28
2014-04-15 33.5 6.1 0.18
2014-04-25 24.2 7.1 0.29
2014-07-10 58.5 18.1 0.31
2014-08-18 31.6 16.3 0.51
2014-09-08 84.7 30.9 0.36
2014-09-09 33.1 10.5 0.32
2014-09-13 13.8 10.1 0.73
2014-11-26 39.3 10.6 0.27
2014-12-24 36.2 8.9 0.25
2015-04-14 32.6 11.0 0.34
2015-06-02 34.3 23.9 0.70
2015-06-24 31.8 10.8 0.34
2015-08-07 15.0 12.4 0.82
2015-08-20 20.4 17.3 0.85
2015-09-30 17.8 6.9 0.39
2015-10-02 61.5 19.8 0.32

Figure 7: 15-min rainfall values for 2014-04-15, a storm with low daily spatial variability (size of the
scatter points corresponds to relative magnitude of rainfall).

variance when that rain gauge was removed. For the most part, these values vary little between the

three time scales (15 min, hourly, and daily). This is because the variance is related more to the

spatial arrangement of the observations than their actual magnitude.

Figure 8 shows the average absolute difference in rainfall estimation when the nearby stations are



Figure 8: Average percent increase in variance and percent difference in rainfall estimation without
nearest stations (Experiment 1)

excluded. On average, the percent difference in rainfall estimation for the 15-minute time step was

49% with a maximum of 72% for WS-2. The average absolute difference in rainfall estimation at the

15-minute time step was 0.34 mm. For 15-minute intervals with more rainfall recorded, the difference

was generally larger. Figure 9 shows a histogram of the absolute difference in rainfall estimation at

the 15-minute time step when the rainfall estimated including the nearest rain gauge was above 5

mm. Out of the 155 data points, 16 had differences greater than 5 mm. The maximum difference

in rainfall estimation was 24.5 mm at WS-6, which occurred on 2015-06-02. Without the nearest

rain gauge, the estimated rainfall was 7.4 mm; with the nearest rain gauge included, the rainfall

estimate was 31.9 mm. For perspective, this difference can be thought of in terms of design storms.

The estimated rainfall intensity including the nearby rain gauge (31.9 mm/15 min or 128 mm/hr)

for this 15-minute time period corresponded to a 10-year, 15-minute design storm. If this station

did not exist, the estimated rainfall intensity (7.4 mm/15 min or 29.6 mm/hr) would erroneously be

considered negligible by design standards (Bonnin et al., 2006).

The results from Experiment 1 were used to compare the distances between rain gauges and the

focus watersheds, to the rain gauge distance recommendations made by Berne et al. (Table 7). Berne

et al. analyzed radar and rain gauge data to recommend temporal and spatial resolution requirements

for urban watersheds based on the watershed surface area. Table 2 lists the distances of removed rain

gauges and Table 7 lists the recommended distances for the seven focus watersheds based on their

surface area. Four of the seven focus watersheds in this study had more than one rain gauge station



Figure 9: Histogram of absolute differences in rainfall estimation in Experiment 1 when rainfall
estimates including the nearest gauge were greater than 5 mm

within the distance recommended by Berne et al.: WS-1, WS-2, WS-4, WS-5. When the closest rain

gauge was removed, the average rainfall estimation changed significantly for each watershed at the

15-minute scale (49%, 60%, 37%, and 44%, respectively). One would expect the difference in rainfall

estimation to be much smaller given that one rain gauge station was still within the recommended

distance. This suggests that the recommended distances offered by Berne et al. would be too coarse

for the study area. The difference in results obtained in this study and Berne et al’s may be due to

climatic or geographic differences between the study area an urban area on the East Coast of the U.S.,

and the one used by Berne et al. (2004), a coastal. area in Southern France.

Table 7: Experiment 1 results compared to literature-recommended spatial resolutions

Recommended distance Ave. difference at 15 min
to rain gauge time scale when nearest rain gauge within

ID (Berne et al., 2004))(km) the recommended distance is removed
WS-1 2.5 49%
WS-2 2.0 60%
WS-3 1.4 NA
WS-4 1.9 37%
WS-5 2.1 44%
WS-6 1.8 NA
WS-7 2.5 NA



Experiment 2 Results

Results from Experiment 2 show the impact that removing rain gauges at increasing distances from

a focus watershed has on rainfall estimation for that focus watershed. Figure 10 shows how variance

changes when increasing the distance of removed stations from watershed centroids. The change in

variance decreases drastically as the distance increases from 0 to 1.5 km, and is effectively negligible

by 3.5 km. The greatest change in these results occurs within 1 km. Therefore, on average in this

study area, to appreciably increase the confidence of rainfall estimation, a new rain gauge must be

within 3.5 km of a given watershed’s centroid and would preferably be within 0.5 km.

Figure 11 shows how the rainfall estimation changes for each focus watershed as stations are

excluded from the Kriging analysis. A linear model was fit to the data for each watershed. For all but

WS-4 and WS-5, the R2 values were at least 0.72, suggesting a linear relationship between distance

to the furthest removed rain gauge and the percent change in rainfall estimation for these watersheds.

There may be several reasons why the relationship between distance to the furthest removed rain

gauge and the percent change in rainfall estimation for WS-4 and WS-5 appears to be non-linear.

One possible explanation is the geography of the watersheds. WS-4 and WS-5 are located more

inland compared to the other watersheds. Rainfall variation corresponding to distance from the coast

has been previously observed elsewhere (Hayward and Clarke, 1996). The spatial relationship of the

neighboring rain gauges may also be a factor. Since WS-4 and WS-5 are located in the center of the

rain gauge network, the rain gauges were removed in the analysis from all sides of the watersheds. In

contrast, because the other watersheds were on the coast, the rain gauges removed for these watersheds

were only from the inland side. Further research specifying the direction from which rain gauges are

removed in the analysis would help test this explanation.

Comparison with Weather Radar Data Results

Figure 12 shows the results of the comparison between the area-averaged rainfall estimates based

on the Kriging analysis using the rain gauge data, and the area-averaged rainfall estimates from

the NEXRAD DAA data. The figure reports the root mean squared error and Pearson correlation

coefficient (“RMSE” and “r” on the figure, respectively). The Figure 12a-12g show the comparison of

the estimates from the two data sources for each of the seven focus watersheds. For these comparisons,

the correlation coefficients were between 0.87 and 0.94. Similarly, the RMSE values were between 2.70

mm and 3.71 mm. Many of the hourly rainfall estimates are small (less than 10 mm) and thus would



Figure 10: Percent increase in variance compared to distance from watershed centroid to excluded
measurement stations at 15-minute time scale (Experiment 2)

Figure 11: Percent difference in rainfall estimations compared to distance from watershed centroid to
excluded measurement stations at 15-minute time scale (Experiment 2)

probably not contribute to flooding. To focus on rainfall totals more likely to contribute to flooding,

the rainfall estimates greater than 20 mm (based on the rain gauge-based estimate) for all of the

focus watersheds were calculated (Figure 12h). This subset of the data is much more scattered with

a correlation coefficient of 0.72 and a RMSE of 9.72 mm. The increased scatter for large rainfall

magnitudes, their coarse temporal (minimum 1 hr) and spatial resolution ( 1.5 km) limits the ability



of NEXRAD DAA rainfall product in urban flash flood applications in this study area.

Figure 12: Comparison of area-averaged rainfall estimation based on the Kriging of rain gauge data
and area-averaged NEXRAD DAA product data. The first seven subplots compare all of estimates by
focus watershed. The last subplot (lower right-most) shows the comparison of the rainfall estimates
greater than 20 mm (based on the rain gauge estimates) from all focus watersheds.

Conclusions

The objective of this paper is to quantify the effect of rain gauge proximity on area-averaged rainfall

estimation for small (<1 km2) problematic urban watersheds. Virginia Beach, VA. served as the case

study for the analysis. Rainfall data from three different sources, the City of Virginia Beach (CVB),

the Hampton Roads Sanitation District (HRSD), and Weather Underground (WU), were collected.

In total, rainfall data from 44 stations for the 20 days with the highest rainfall totals over a three

year period were used in the analysis. The WU data were quality controlled on a station by station

basis resulting in one station being excluded from the analysis. Kriging was performed to quantify

the effect of nearby stations on the rainfall estimation for seven focus sub-watersheds. The results

were then compared to radar rainfall estimates for context.

The nearest quality controlled rain gauge to the focus watershed centroids and all closer rain

gauges were removed from the network to understand the effect of nearby rain gauges on rainfall



estimation. The results of this analysis indicate that rainfall estimations change on average by about

50% across all the watersheds at a 15-minute time step when the nearest station is excluded. For

a single watershed, the highest average change in rainfall estimation was over 70% at a 15-minute

time step with the largest difference in rainfall estimation of 24.5 mm at a 15-minute time step. This

corresponds to the difference between a negligible design storm and a 10-year, 15-minute design storm.

Differences of this magnitude could drastically affect flood forecast applications for these small, flashy,

urban watersheds.

An analysis was also performed to assess the effect on rainfall estimation and variance from in-

creasingly distant rain gauges to the watershed centroid. The results suggest that rain gauges added

within 0.5 km can decrease variance by 50-100% and a rain gauge 3.5 km from the watershed centroid

will not decrease estimation variance appreciably. The current rain gauge network has stations within

0.5 km for four of the seven focus watersheds. As flooding problems continue to increase within coastal

regions due to climate change and sea level rise, additional problem areas are likely to arise.

To put the analysis of the rain gauge data in the context of radar-derived rainfall products, the

rainfall estimation based on a Kriging analysis using the rain gauge data was compared with NEXRAD-

derived rainfall estimations. This comparison was on an hourly time step, the finest temporal reso-

lution of the NEXRAD Level III rainfall estimation products. When considering all magnitudes of

rainfall estimation, the correlation between the two sources was high (correlation coefficients between

0.87 and 0.94, RMSE between 2.70 mm and 3.71 mm). However, when considering only the higher

magnitude estimates more likely to cause flooding (greater than 20 mm) the correlation decreased

(correlation coefficient of 0.72, RMSE of 9.72 mm). Besides the decreased correlation with greater

rainfall, the unavailability of NEXRAD Level III products at a sub-hourly temporal resolution and

coarse spatial resolution of the data (cell sizes of roughly 0.25 km x 1.5 km for the study area) limit

current NEXRAD-derived Level III rainfall products in this area for flash-flood applications.

If the long term goal were to cover the entire study area with regularly spaced rain gauges at a 1

km spacing, so that every point would be roughly within 0.5 km of a rain gauge, then 471 stations

would be required. Recognizing that this is impractical with existing technology, alternatives could

be explored to obtain the dense rainfall data needed to predict flash flooding in an urban setting. An

obvious alternative is to focus resources by deploying rain gauges near problem areas. For the current

study area, this could begin with adding rain gauges within 0.5 km of the three focus watersheds which

do not currently have a rain gauge within that distance. A longer term option may be to refine the use



of and advance weather radar technology, specifically focused for fine temporal and spatial resolutions

required for urban flash flood warning. Also, advancements in sensor and information technology will

also play a role in making denser rainfall networks possible. For example, using acoustic rain gauges,

that, unlike the more common tipping bucket rain gauge, do not contain moving parts may reduce

costs allowing for larger deployments. Cheaper, binary rainfall sensors could also help fill the need of

dense rainfall measurements (Hill, 2015). Leveraging larger efforts like the Internet of Things (IoT)

technologies and cyber-physical systems (CPS) approaches, will make it possible to glean meaningful

information from observations, and to use this information in stormwater infrastructure controls such

as valves, storm gates, and pumps to create a smarter storm water management systems for flood

mitigation.
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