
This is a manuscript of an article that was published in October 2019 for publication in Environmental

Modelling & Software. The final publication is available at https://doi.org/10.1016/j.envsoft.2019.07.009

Leveraging Open Source Software and Parallel Computing for

Model Predictive Control of Urban Drainage Systems using

EPA-SWMM5

Jeffrey M. Sadler1, Jonathan L. Goodall, Ph.D.2, Madhur Behl, Ph.D3, Mohamed M.
Morsy, Ph.D4, 5, Teresa Culver, Ph.D6, and Benjamin D. Bowes1

1Graduate Research Assistant, Dept. of Engineering Systems and Environment, Univ. of Virginia,
151 Engineers Way, P.O. Box 400747, Charlottesville, VA 22904, jms3fb@virginia.edu

2Associate Professor, Dept. of Engineering Systems and Environment, Univ. of Virginia, 151
Engineers Way, P.O. Box 400747, Charlottesville, VA 22904, goodall@virginia.edu (Corresponding

Author)
3Assistant Professor, Computer Science Dept, madhur.behl@virginia

4Research Associate, Dept. of Engineering Systems and Environment, Univ. of Virginia, 151
Engineers Way, P.O. Box 400747, Charlottesville, VA 22904, mmm4dh@virginia.edu

5Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, P.O. Box 12211,
Giza 12613, Egypt, mohamedmorsy@eng.cu.edu.eg

6Associate Professor, Dept. of Engineering Systems and Environment, Univ. of Virginia, 151
Engineers Way, P.O. Box 400747, Charlottesville, VA 22904, tbc4e@virginia.edu

Highlights

• Open-source implementation of model predictive control for EPA-SWMM5, swmm mpc

• Evolutionary algorithm used to select effective control policy at each time step

• Parallel processing of genetic algorithm significantly reduces run-time

• Control policy from swmm mpc minimizes flooding and maintains target water level

• Computational cost measured for personal, high-performance, and cloud-based com-
puters

Abstract

Active stormwater control may play an important role in mitigating urban flooding which
is becoming more common with climate change and sea level rise. In this paper we describe
and demonstrate swmm mpc, software we developed for simulating model predictive con-
trol (MPC) for urban drainage systems using open source software (Python and the EPA
Stormwater Management Model version 5 (SWMM5)). swmm mpc uses an evolutionary al-
gorithm as an optimizer and supports parallel processing. In the demonstration case, the
control policy found by swmm mpc for two storage units achieved its objectives of 1) prac-
tically eliminating flooding and 2) maintaining the water level at the storage units close to
a target level. Although the current swmm mpc workflow was feasible for a simple model
using a desktop PC, a high-performance computer or cloud-based computer with more com-
putational cores is needed for a more complex model.
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Software Availability

The swmm mpc software is open-source and available for use and improvement on GitHub
at https://github.com/UVAdMIST/swmm mpc (note to reviewers/editor - once revisions
are complete, we will make a release inf the repository and include a DOI in this section). A
Docker image of swmm mpc is also available at https://hub.docker.com/r/jsadler2/swmm
mpc/. The demonstration model is available on HydroShare (Sadler, 2018).

1 Introduction

Researchers have predicted that storm intensity will increase on average due to climate change

(Berggren et al., 2012; Neumann et al., 2015). Coastal cities have an additional challenge as

sea levels rise, which makes it more difficult to drain storm runoff from streets. Coastal cities

have already experienced increased flooding from high tidal events alone (Sweet and Park,

2014).

More intense storms and rising sea levels will put greater stress on urban drainage sys-

tems necessitating changes for urban drainage systems to perform at current levels. One pos-

sible adjustment is to make capital improvements such as increasing pipe size or construct-

ing new storage units. Another option is to convert drainage systems from passive, gravity

driven systems to active or “smart” systems (Kerkez et al., 2016). Active systems can in-

crease performance of a urban drainage system at a lower cost than traditional capital im-

provements (Meneses et al., 2018). Actively controlling an urban drainage system does not

increase the actual capacity of urban drainage infrastructure, but rather more efficiently uses

the existing infrastructure, increasing its effective capacity. For example, one part of an ac-

tive urban drainage system could be a valve at the outlet of a retention basin which can be

automatically opened or closed based on system conditions and forecasts. With this setup,

the valve could be closed more during a storm, which would utilize the available storage bet-

ter than would have been possible without the valve.
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For an active urban drainage system to achieve its objective (e.g., minimize flooding, re-

duce combined-sewer overflows), an effective management strategy is required. Management

decisions for a urban drainage system include which actuators (e.g., valves and pumps) in

the system should change, when to change them, and to what setting they should be changed.

We refer to these decisions as a control policy (Vrabie et al., 2009; Mayne et al., 2005; Lang-

son et al., 2004). An effective control policy for an active urban drainage system may depend

on a number of factors such as antecedent moisture conditions, expected intensity and du-

ration of oncoming rainfall, current water levels in the system, the condition of the drainage

infrastructure, and other factors (e.g., tide levels in tidally influenced urban drainage sys-

tems).

A common approach for determining an effective control policy is model predictive con-

trol (MPC) (Camacho and Bordons, 2007). MPC has been used effectively in many control

applications including automotive controls (Del Re et al., 2010), HVAC (heating, ventila-

tion, and air conditioning) (Afram and Janabi-Sharifi, 2014), and other industrial applica-

tions (Qin and Badgwell, 2003). MPC has also been used effectively in urban drainage ap-

plications (Lund et al., 2018; Puig et al., 2009; Cembrano et al., 2004; Schütze et al., 2004;

Gelormino and Ricker, 1994). In MPC, a process model is used to simulate the physical sys-

tem and evaluate alternative control policies. Forecast data can be used as input for the

simulation. During the control period, on-line optimization is performed, meaning that an

optimal control policy is found and implemented at each time step (Camacho and Bordons,

2007).

Although effective for finding effective control policies, implementing MPC for a urban

drainage system is non-trivial due to the dynamics within the system. The fundamental gov-

erning equations for modeling urban drainage systems are the St. Venant equations which,

when considered fully, are non-linear (Tayfur et al., 1993). This makes finding an optimal

control policy for urban drainage systems challenging using MPC (Darsono and Labadie,

2007). To address this dilemma, two alternative approaches are found in the literature. The

first is to simplify the governing equations of the process model to a linear system. This

makes the optimization problem solvable using well-established procedures such as simplex
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(Nelder and Mead, 1965). Gelormino and Ricker (1994) took the approach of linearizing

their system, converting their process model into a linear-time-invariant model to perform

MPC for a large combined sewer system in Seattle, Washington USA.

The second approach is to retain the non-linear St. Venant equations and use a meta-

heuristic to find the best control policy at each time step. In this approach, a true optimiza-

tion procedure is not possible because the system remains non-linear; instead, a metaheuris-

tic (e.g., an evolutionary algorithm (EA)) can be used (Gandomi et al., 2013). The use of

a metaheuristic precludes the possibility of determining a guaranteed optimal control pol-

icy and is typically computationally expensive. The advantage of this approach, however, is

that the non-linear governing equations in the process model are retained. This approach

was taken by Heusch and Ostrowski (2011) who used a dynamically dimensioned search for

finding the best control policy and the United States Environmental Protection Agency’s

Stormwater Management Model Version 5 (EPA-SWMM5), which numerically solves the St.

Venant equations, as their process model (Huber et al., 2005). Similar to Heusch and Os-

trowski (2011), we have selected to follow the second approach so that the nonlinearities in

the process model can remain, and to leverage EPA-SWMM5 as the process model.

EPA-SWMM5 is an attractive choice as a process model for urban drainage systems for

several reasons. EPA-SWMM5 is in the public domain making it free of charge and its source

code is open-source making it customizable. The model simulates a wide variety of urban

drainage structures including active controls such as orifices with variable openings and pumps.

EPA-SWMM5 has been used in many research applications, as well as in engineering prac-

tice to model urban drainage systems (Burger et al., 2014). Notwithstanding the wide use

and utility of EPA-SWMM5 for modeling urban drainage systems, and the established util-

ity of MPC as a successful approach for determining effective control policies, to our knowl-

edge, there is currently no software available for performing MPC using EPA-SWMM5. Al-

though Heusch and Ostrowski (2011) developed software that implements MPC with EPA-

SWMM5, that software was closed-source and is no longer available.

This study advances the work done by Heusch and Ostrowski (2011) by creating open-

source software for simulating MPC for EPA-SWMM5, swmm mpc, and by demonstrating
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swmm mpc’s parallel computing capabilities. By making swmm mpc open source, other re-

searchers will be able to use, improve, and build from the source code. Although, the soft-

ware written by Heusch and Ostrowski (2011) supported the use of parallel computing, this

capability, which is critical to the usability of such software given its associated computa-

tional costs, was never demonstrated or tested in the literature.

swmm mpc was written in the Python programming language. Several third-party Python

packages were necessary for the success of this project including pyswmm (https://github.

com/OpenWaterAnalytics/pyswmm) and the Distributed Evolutionary Algorithms for Python

(DEAP) (https://github.com/DEAP/deap). To evaluate swmm mpc, it was applied to a

use case model with two active control devices. The swmm mpc results were compared to

the results from a rules-based approach and a scenario with no active control. The swmm

mpc software was run on a desktop personal computer (PC), a high-performance computer

(HPC), and a rented, cloud-based machine to demonstrate and test the parallel processing

capability of the software.

The remainder of this paper describes the methods used to implement swmm mpc in-

cluding a description of the MPC workflow and the interaction and role of the third-party

Python libraries. The use case model is then described and the results of the evaluation are

presented and discussed. As part of the results and discussion, the benefits of parallelization

and the use of a high-performance and cloud-based computing for running swmm mpc are

quantified and discussed.

2 Methods

2.1 Overview of MPC for urban drainage systems

MPC for a urban drainage system consists of three main components as shown in Figure 1.

The first component is the physical system, including the system states and system controls.

The system states include hydraulic states such as water levels at system nodes and flow

rates in system pipes, and hydrologic states such as watershed soil moisture and runoff. In

a real system, these states would come from real-time sensors. The system controls are actu-

5

https://github.com/OpenWaterAnalytics/pyswmm
https://github.com/OpenWaterAnalytics/pyswmm
https://github.com/DEAP/deap


ators that accept and implement the settings resulting from the MPC process at each time

step.

The second component in MPC is a process model used to simulate the future states of

the urban drainage system. The process model uses the states read from the urban drainage

system as its initial states. The process model also takes future model inputs such as rain-

fall or tide level. Given the current state of the system and future disturbances, the process

model is used to evaluate the effectiveness of control policy candidates.

A control policy consists of one setting for each actuator, for each control time step, for

the duration of the control horizon. An individual setting can be a number as would be the

case for a valve where the number would correspond to the percent open of the valve. An in-

dividual setting can also be a binary setting as would be the case for a pump that can either

be on or off. As an example, consider a system with a variably opening valve and an on-off

pump with a control horizon of one hour and a control time step of 15 minutes. A control

policy for this system would consist of two arrays, an array of numbers between 0 and 1

to specify the percent open of the valve should be, and an array of “on” or “off” to specify

the setting of the pump. Both arrays would have four settings (one for each time step in the

control horizon of one hour).

To evaluate the effectiveness of a given control policy, the settings in the policy are ap-

plied to simulated actuators in the process model and the process model simulation is exe-

cuted. At the end of the simulation, a cost is determined for the policy. The cost is based on

a user-defined cost function. In this study, we consider mainly the cost resulting from flood-

ing but other costs could be considered withing this general framework including the costs of

combined sewer overflows (CSO) and water quality. The cost may also be a factor of other

process model outputs such as deviation from target water levels at certain points (Schütze

et al., 2004).

The third component of MPC for a urban drainage system is an optimization routine to

determine the best control policy for the system. Using the process model to assign a cost to

a given control policy, the optimization procedure seeks to find the control policy that incurs

the smallest cost. If the process model is linear, a true optimum can be found using tradi-
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Figure 1: Main components of MPC in swmm mpc system

tional optimization procedures like simplex (Nelder and Mead, 1965). If the process model is

non-linear, other approaches must be taken such as using a metaheuristic to find an effective

control policy (Gandomi et al., 2013).

In summary, the chronological workflow for MPC for a urban drainage system is: 1) sys-

tem states are read from the physical system, 2) using the system states as initial conditions

and future disturbances as input, a process model is used to evaluate control policies, 3) the

best control policy is selected through an optimization procedure, and 4) the best control

policy is implemented in the real system. Although the best control policy is obtained for

the entire control horizon, only the first step in the control policy is used since the procedure

re-optimizes at every control time step.

2.2 MPC for SWMM5: swmm mpc

Implementation of the parts of MPC using Python and SWMM5 was done in the swmm

mpc Python package. The software simulates online MPC for an urban drainage system us-

ing SWMM5 as the process model and as the simulated physical system. The current system

could also be used in an offline mode to find a control policy for a forecast storm event be-

forehand.
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2.2.1 Simulated urban drainage system: OWA-SWMM5 and pyswmm

In swmm mpc an enhanced version of SWMM5, OWA-SWMM5 (https://github.com/OpenWaterAnalytics/

Stormwater-Management-Model), was used via an accompanying Python library, pyswmm

(https://github.com/OpenWaterAnalytics/pyswmm) to simulate the physical urban drainage

system. Both OWA-SWMM5 and pyswmm were developed and are distributed by Open Wa-

ter Analytics.

OWA-SWMM5 and pyswmm provide three key functionalities needed to simulate the

online optimization procedure required by MPC. First, unlike when a simulation is run via

EPA-SWMM5, when using pyswmm, custom Python routines can be executed between each

time step of the simulation. This is critical to swmm mpc because at each time step in the

MPC simulation workflow three processes occur: 1) the states from the simulated urban

drainage system are read and transferred to the process model; 2) the metaheuristic is run;

and 3) the best policy found by the metaheuristic needs is implemented in the simulated ur-

ban drainage system. Using pyswmm, Python code can be run to perform each of these pro-

cesses at each control time step.

Second, pyswmm enables the transfer of system states at each time step from the simu-

lated urban drainage system to the process model. This is accomplished through a hotstart

file. A SWMM5 hotstart file contains all of of the hydraulic and hydrologic states of the

model at the time in the simulation when the hotstart file is saved. When a hotstart file is

read into a simulation, that simulation’s initial hydraulic and hydrologic states are the states

represented in the hotstart file. This functionality is well-suited to transfer the states of the

simulated urban drainage system to the process model in the swmm mpc workflow.

Using EPA-SWMM5, a hotstart file can be saved only at the end of a simulation. This

is a critical limitation because in MPC the system states need to be transferred at every

time step. To address this limitation, we added new functionality to OWA-SWMM5 and

pyswmm to enable hotstart files to be saved at any point in a SWMM5 simulation executed

using pyswmm. This functionality allowed the system states of the simulated urban drainage

system to be transferred to the process model at each time step.
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Third, through pyswmm the best control policy found by the metaheuristic can be imple-

mented at each time step. This is done using pyswmm to change the settings of the actua-

tors in the model during the simulation. When a simulation is initialized in pyswmm, each

object in a SWMM5 model (every node, link, subcatchment, etc.) can be read into a Python

object via its element ID as defined in the SWMM5 input file. Each of these Python objects

has attributes that can be read (e.g., depth at a node and flow in a link). Actuators in the

model read into Python objects also have the “target setting” attribute that can be written.

To implement a control setting for an actuator via pyswmm, its “target setting” is set to the

first setting in the best control policy.

2.2.2 Process model: EPA-SWMM5

In addition to representing a real urban drainage system, SWMM5 was used as the pro-

cess model. However, in contrast to using OWA-SWMM5 to simulate the physical urban

drainage system, the standard EPA-SWMM5 was used as process models. This was neces-

sary because the current version of pyswmm cannot run more than one simulation at a time.

This is a functionality needed in swmm mpc because at each time step during the simulation

of the urban drainage system, at least one process model simulation is run in a predictive

fashion to evaluate control policy candidates. EPA-SWMM5, unlike pyswmm, supports mul-

tiple simulations being executed simultaneously.

2.2.3 Active controls in EPA-SWMM5

EPA-SWMM5 simulates the active control of certain hydraulic structures including pumps,

orifices, and gates. Each of these structures has a setting that can be assigned. For exam-

ple, the setting for an orifice is a decimal number between 0 and 1 which corresponds to the

percent open of the orifice (e.g., a 0.5 setting would mean the orifice was 50%). The user can

also define an amount of time for a structure to implement a change in setting. This “time

to change” parameter in EPA-SWMM5 represents the delay seen in reality for changing an

actuator’s setting.

Changing controls during an EPA-SWMM5 simulation is done using one or more control
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Figure 2: Example of a control rule in SWMM5

rules (see example in Figure 2). A control rule is specified in the SWMM5 input file before

the simulation begins and consists of four parts. The first two parts of a control rule are the

rule name and the condition. In the example, the rule name is “R1”. The condition is “IF

NODE J1 DEPTH <2”, meaning that the program will check if the depth at the node with

the ID of “J1” is less than 2 (the units being defined globally in the model input file as feet

or meters). In EPA-SWMM5 the condition can be the state at any link or node and can also

be related to global simulation states such as the model simulation time. The third part of

a control rule defines which structure(s) should change if the specified condition is met. In

the example the structure that will change is “ORIFICE R1”. Finally, the fourth part of the

rule defines the setting to which the structure should change. In the example, this is “0.6”,

meaning that if the condition is met, the orifice should be set to 60% open.

In swmm mpc a control policy is a time series of control settings (one control setting per

control time step for the control duration). This is implemented in EPA-SWMM5 as a set

of control rules. Since a control policy in MPC is a time series, each control rule’s condi-

tion is based solely on the model’s simulation time in decimal hours. For example, Figure

3 shows a control policy of four settings (0.2, 0.4, 0.5, and 0.2) for “ORIFICE R1” at a 15-

minute control time step implemented as control rules. This text would be written to the

EPA-SWMM5 process model input file under the “CONTROLS” heading.

2.2.4 Metaheuristic: evolutionary algorithm

Because we used EPA-SWMM5 as a black-box process model, a metaheuristic was used in

place of a true optimization procedure to find an effective control policy at each time step

in the MPC run. We chose an evolutionary algorithm (EA) for the metaheuristic since it

has been shown to be successful in other urban drainage control applications (Zimmer et al.,

2015, 2018) and it’s inherent propensity for parallelization Maier et al. (2014). An EA be-
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Figure 3: Example implementation of control policy as set of control rules

gins with an initial population of individuals where, in our case, each individual is a control

policy. A fitness score (or conversely a cost) is assigned to each individual in the population

and certain individuals are selected to survive into the next generation based on their fit-

ness score. Mechanisms for improving the fitness of the individuals from one generation to

the next mimic natural processes including cross-over and mutation (Maier et al., 2014). The

process of selection and improvement is repeated from generation to generation until a stop-

ping criteria is met. Common stopping criteria include a user-defined number of generations

or an acceptably low rate of improvement from one generation to the next. The use of an

EA requires several user-defined parameters including the number of individuals in the ini-

tial population, the cross-over rate, the mutation rate, and the stopping criteria.

In swmm mpc, policies are transcribed to a string of bits in the genetic algorithm. The

settings for orifices and weirs are represented by three bits with eight total possibilities (0/8

open, 1/8 open, . . . , 8/8 open). We limited the settings of orifices and weirs to three bits to

limit the solution space explored by the algorithm. The setting of a pump is represented by

only one binary digit (1 or “ON”, 0 or “OFF).

Since the EA searches for the policy that incurs the minimum cost, the way in which a

cost is assigned to each individual control policy is very influential on the EA’s effectiveness.

In swmm mpc, the cost of a control policy is determined using the process model and a cost

function. First, each individual control policy is implemented in the process model input

file as a set of control rules as described above. Once the control policy is implemented, the
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EPA-SWMM5 model is executed. Elements of the model output resulting from the process

model execution become input for the cost function. The cost function used in swmm mpc is

Cost = α(a · v(u,x)) + β(b · d(u,x)) (1)

where a, v, b, d are each 1-dimensional vectors, u and x are 2-dimensional vectors, and

α and β are scalers. The members of a are user-defined weight values for flooding at any

node in the system and the members of v are the flood volumes at each node over the entire

simulation as calculated by the process model. The members of b are user-defined weights

for deviation from user-defined target water levels at each node in the system and the mem-

bers of d are the average absolute deviations from target water levels again as calculated by

the process model over the entire simulation. u is represents the control policies for all con-

trols, for each time step. x represents the system states. α, and β, are user-defined constants

used to scale and give overall weights to flooding costs compared to deviation costs. Typi-

cally weights for the components of the cost (or objective) function sum to 1 and can include

a scaling factor to account for variables in different units or scales (Kim and de Weck, 2005).

In this formulation, α and β include both the weight and the scaling factors for the objec-

tives.

We intentionally made this cost function flexible so that users can customize it to meet

their objectives which may vary between use cases. A cost for flooding is obviously impor-

tant as that is a major concern for many communities and the prevention of which is one of

the main purposes for urban drainage systems. We also included a cost from deviations for

target water levels because, in certain cases, it is desirable to maintain water levels close to

a target depth. For example, it may be important to keep a certain amount of water in a re-

tention pond for aesthetic and/or ecological purposes. Although the cost function is flexible,

when implemented in swmm mpc, the user need only define what is important to the spe-

cific application. For example, default for a is a vector of all 1’s. When one node is specified,

the weight of any unspecified node becomes zero. The default for b is all zeros, since the user

has to specify a target depth for a given node.
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To execute EAs we used the Distributed Evolutionary Algorithms for Python (DEAP)(https:

//github.com/DEAP/deap) library. An advantage of EAs is that they can easily be run in

parallel since they perform many independent evaluations (Maier et al., 2014). In DEAP

parallel processing is supported through integration with the built-in “multiprocessing” Python

library.

2.2.5 swmm mpc workflow

The MPC workflow in swmm mpc was implemented using three main Python functions (see

Figure 4). The function in the workflow called by the user is “run swmm mpc.” This func-

tion runs the MPC workflow and calls the two other main functions. “run swmm mpc” takes

13 user inputs as shown in Table 1. Through these inputs, the user specifies the model input

file to that represents the urban drainage system, the control inputs (i.e., which controls to

find a policy for, the control time step, and the control horizon), and EA parameters (e.g.,

number of generations, cost function parameters).

The most complex of the user-supplied arguments are “target depth dict” and “node

flood wgt dict” (see Snippet 1 for examples). These two arguments define the a and b vari-

ables in the cost function. Additionally, the “target depth dict” argument is used to deter-

mine d. These arguments map from Python data structures to the mathematical variables

in the cost function. The “target depth dict” argument is a dictionary whose keys are node

ids and whose values are dictionaries. The inner dictionary has two keys, the target depth of

the node and the weight of the cost for deviations from the weight at the node. In Snippet

1, the “target depth dict” specifies that the target depths of Nodes St1 and St2 are 4.0 and

3.5, respectively. The weights are also specified: deviation from the target depth at Node

St1 will be twice as costly as deviation from Node St2. The “node flood wgt dict” is a sim-

pler dictionary, the keys of which are node ids and the values are weights. In Snippet 1, the

“node flood weight dict” specifies that flooding at Node J1 is five times costlier than flood-

ing at Node St1. Note that if one or more node is included in the “target depth dict” or the

“node flood wgt dict”, other nodes are not included in the cost calculation (in terms of the

cost function, the corresponding weights in a and b are zero). This is shown in Snippet 1,
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the weight of deviations from a water level at Node J1 and the weight of flooding at Node

St2 would both be zero since they are not included in the dictionaries.

Snippet 1: Examples of “target depth dict” and “node flood wgt dict”

target_depth_dict = {"Node St1": {"target": 4.0, "weight": 2},

"Node St2": {"target": 3.5, "weight": 1}}

node_flood_weight_dict = {"Node J1": 1, "Node St1": 0.2}

In the “run swmm mpc” function, the SWMM5 model simulating the urban drainage sys-

tem is run step by step via pyswmm. At the beginning of the simulation, the SWMM5 input

file representing the urban drainage system is copied. This copy serves as the input file used

for the process model. To ensure that the states and simulation periods of process model

remain in sync with the simulated urban drainage system, at each time step a hotstart file

from the urban drainage system simulation is saved and then used as the initial states for

the process model. The process model’s simulation start date and time are also updated to

match the urban drainage system simulation’s current date and time.

Once the process model’s simulation start date and time is same as the simulated ur-

ban drainage system and the hotstart file of the simulated urban drainage system is saved,

the “run ea” function is called. The “run ea” function initiates the EA which starts by cre-

ating an initial population of individual control policies. In our case, an individual is a 1-

dimensional vector, each member of which is a setting for an individual actuator for one con-

trol time step.

The initial population for the first time step is a group of random individuals. For sub-

sequent time steps, elitism is used where the best policy found in the previous time step is

used to seed the initial population of the current time step. For example, consider a control

policy for i control time steps for j controls represented by a ixj vector, u. For the first time

step, the settings for time 0, u0, through time i, ui, are found, however only u0 is imple-

mented. Because settings that minimize cost for times 1, 2, . . . i (u1, u2, . . . ui) have also been

found by the optimizer, in swmm mpc, these settings are used as the basis for seeding the
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population for the next time step. Because the seed population is for the following time step,

u1 serves as u0, u2 serves as u1, etc. and ui is set randomly. This base individual is then

varied randomly to create several similar individuals. Some randomly created individuals are

also added to the population for the next generation to create variety in the policies and to

ensure the number of policies is equal to the initial population size specified by the user.

The control policies initiated in the “run ea” function are input into the third main func-

tion, “evaluate”. The evaluate function makes a copy of the process model input file and the

input hotstart file. To avoid file naming conflicts, a random string is appended to the hot-

start and input file names. The control policy is then implemented in the newly created in-

put file by adding corresponding control rules. Once the control policy is implemented in

the input file, the simulation is executed with EPA-SWMM5. When the simulation run is

completed, the “evaluate” function parses the output file to determine v and d in the cost

function. The policy’s cost can then be determined since the remaining cost function pa-

rameters (α, a, β, and b) are user-defined. The evaluation of an individual control policy is

independent of all others, therefore, the “evaluate” function is the part of the workflow that

is parallelized through Python’s “multiprocessing” module.

Using the cost that has been assigned to each policy, the “run ea” function selects the

best individuals to retain in the population of policies for the next generation. After the

user-defined number of generations are complete, the best policy found by the EA is imple-

mented in the simulated urban drainage system in the “run swmm mpc” function. The pol-

icy is also saved and used to seed the population of the next time step. Finally, the setting

for that time step is recorded so that at the end of the simulation, the best control policy

for the entire simulation time is saved. If ever the cost at a time step is zero, the algorithm

stops since the performance cannot improve further.

2.3 System demonstration

To demonstrate the utility and functionality of swmm mpc, three cases (A, B, and C) with

increasing complexity were implemented in a simple SWMM5 model. Three control scenarios

(passive, rules-based, and MPC) were applied to each of the cases. The computational costs
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Table 1: User inputs for “run swmm mpc” function

Parameter name Data type Description Default value

inp file path String File path to
SWMM5 input file
(.inp)

N/A

control horizon Number Control horizon in
hours

N/A

control time step Number Control time step in
seconds

N/A

control str ids List of strings IDs of control struc-
tures to be adjusted

N/A

work dir String Path to directory
where temporary
files will be stored

N/A

results dir String Path to direc-
tory where results
should be stored

N/A

target depth dict Dictionary IDs of nodes and
corresponding tar-
get depths and rela-
tive penalty weights

Null

node flood weight dict Dictionary IDs of nodes and
corresponding rela-
tive penalty weights

Null

flood weight Number Overall weight of
flood penalties

1

dev weight Number Overall weight of
deviation penalties

1

ngen Number Number of genera-
tions that the GA
should perform

7

nindividuals Number Number of individ-
uals in the inital
GA population

100

run suffix String suffix to be ap-
pended to results
file
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Figure 4: Activity diagram of MPC implementation using Python
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of running swmm mpc were also quantified.

2.3.1 Demonstration model and rainfall event

A schema of the model used to demonstrate swmm mpc is shown in Figure 5 and the model

properties are given in Table 2. Since the intent of this paper is to demonstrate the software,

a simple model was used. However, any SWMM5 model with controllable features can be

used with swmm mpc.

The demonstration model has two subcatchments, S1 and S2. For the example use case,

we used a 1-year, 12-hour design storm for Norfolk, Virginia, a coastal city that experiences

frequent flooding (Mitchell et al., 2013). The design storm (see Figure 6) had 78.2 mm of to-

tal rainfall (Bonnin et al., 2018) with an SCS Type II temporal distribution (Mockus, 2012).

The use of design storms is typical when designing and modeling stormwater infrastructure

(for example Villarreal et al. (2004) and Hatt et al. (2009)). To introduce some spatial varia-

tion in the model, the rain for S2 started 18 minutes after the start of the rain event for S1.

S2 is smaller but flashier with a smaller width and a larger percent of impervious surfaces.

This is manifested in a higher peak flow shown in Figure 6.

The subcatchment S1 and S2 drain directly to two storage units in parallel, St1 and St2,

respectively. In SWMM5 models, storage units are generic and are used to represent both

natural storage facilities such as a pond as well as man-made facilities such as an under-

ground tank or retention pond. Two orifices (R1 and R2) control the flow out of two storage

units. The two orifices from the storage units meet and flow through a junction, J1, before

leaving the system through the outfall. The model simulation time was 24 hours and the

routing time step was ten seconds in the MPC and passive scenarios and five seconds in the

rules-based scenario.

2.3.2 Demonstration cases

We implemented and compared the three control scenarios for three use cases with differ-

ent objectives and model constraints increasing in complexity (see Table 3). In Case A, the

simplest of the three cases, the only objective was to minimize flooding. In Case B, an addi-
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Table 2: Properties of demonstration model

Subcatchment properties

Name Area (hectares) Width (km) Slope (%) Impervious (%)

S1 32 0.46 0.5 30
S2 20 0.61 0.5 45

Storage unit properties

Name Surface Area
(m2) (constant)

Initial Depth
(m)

Max Depth (m) Bottom Elev
(m)

St1 6039 0.5 1.5 0.91
St2 4645 0.5 1.5 0.91

Pipe properties

Name Length (m) Diameter (m) Roughness

C1, C2 122 0.3 0.01

Node properties

Name Max depth (m) Bottom Elev
(m)

J2 1.5 0.91
J1 0.6 0.30
Outfall NA 0

Orifice properties

Name Height (m) Discharge Coef-
ficient

R1 & R2 0.61 0.65
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Figure 5: Demonstration model schema

Figure 6: Design storm input to use case study
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Table 3: Differences in MPC cost function parameters between test cases

Cost function parameter (description) Case A Cases B & C

α (overall flood weight) 1 1000
a (individual node flood weight [St1, St2, J1, J2]) [1, 1, 1, 1] [1, 1, 1, 1]

β (overall deviation weight) 0 0.5
b (individual deviation weight [St1, St2, J1, J2]) NA [1, 1, 0, 0]

(target depths (m) [St1, St2, J1, J2]) NA [0.5 , 0.5 , NA, NA]

tional objective of maintaining a target water depth of 0.5 m at the storage units was added.

In Case C, the objective was the same as Case B, but a tidal boundary condition at the out-

fall was added (see Figure 7).

Since Cases B and C are multi-objective, α and β had to be selected based on the rela-

tive importance and the relative scale of each. The units of v were were 106 gallons in the

SWMM5 demonstration model, much smaller in magnitude in our case than the deviations

from target water levels which were in units of feet. To scale the two variables and empha-

size minimizing flooding at Node J1 over minimizing deviations from the target water depths

at the storage units, we set the cost of flooding, α, 2000 times larger than the cost of devia-

tions, β (1000 compared to 0.5) for Cases B and C.

2.3.3 Control scenarios

Scenario 1: Passive In this scenario there is no active control. The outlets are 100%

open at all times.

Scenario 2: Rule-based control For this scenario, simple logical rules controlled the

orifice openings and therefore the discharge from the storage units. In practice, such rules

can be based on experience and knowledge gained by local stormwater personnel over time.

Although, heuristic-based rules alter a dynamic, actuated system, the rules themselves are

static, meaning that they do not change for the duration of an event. Furthermore, the rules

do not adjust based on forecast conditions.

There were two sets of rules used in the demonstration cases. For Case A, where the only

objective was to reduce flooding, the rules (see Figure 8) specified to open the orifice com-

21



Figure 7: Tidal boundary condition at outfall used in Case C
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Figure 8: Control rules for Case A

pletely as long as the depth in the downstream node, J1 was below 0.49 m (80% of the maxi-

mum depth). Additionally, to avoid overtopping, if the storage units reached 1.49 m (98% of

the maximum depth) the orifices were to open to avoid overtopping of the storage units.

The rules for Cases B and C were the same. These rules (see Figure 9) were similar to

the Case A rules, however, in addition to reducing flooding, the rules for Cases B and C also

took into account the target depth of 0.52 m. In these rules the orifices were open when the

depth at Node J1 was below 0.49 m and when the depth in the storage units was above the

target water depth. The orifices were closed when the depth at Node J1 was above 0.49 m or

when the depth in the storage units was below the target depth. The control rules scenarios

for each case were run via pyswmm with a control time step of 5 seconds.

Scenario 3: MPC The MPC control policy was found using swmm mpc as described in

Section 2.2.5 above. One advantage of MPC over the rule-based control is the ability to ad-

just the actuators based on forecast conditions. For the use cases, we used a control time

step of 15 minutes and a control horizon of one hour. Therefore, with two controls, a single

control policy consisted of a vector of eight values (2 controls x 4 control steps per hour x 1

hour) (see Table 4). The number of individuals for the initial population of policies in the

genetic algorithm was 120 and the number of generations was 8.

2.3.4 Use of parallel, high-performance, and cloud computing

The EA used for selecting the best control policy is computationally expensive and therefore,

some analysis of computational costs for executing the swmm mpc workflow was performed.
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Figure 9: Control rules for Case B and C

Table 4: Control parameters for demonstration cases

Parameter Value

Control Horizon (hr) 1
Control Time Step (hr) 0.25

Num controls 2
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Table 5: Specifications of computational resources used for demonstration model

PC HPC GCP

Max. # cores 8 28 64 (tested up to 32)
CPU speed 3.60 GHz 2.4 GHz 2.0 GHz

Processor type Intel i7 Intel Xeon Intel Xeon
RAM 16 GB 128 GB 7-120 GB (depending on # of CPUs)

The wall-clock times for Case A (the more complex of the two cases) were compared when

using a typical personal computer (PC) and the University of Virginia’s high-performance

computing (HPC) system, Rivanna. Recognizing that many (likely most) municipalities will

not have HPC resources available to them, we also explored the use of a commercial cloud

computing service for running swmm mpc. These services, such as Amazon Web Services,

Google Cloud Platform, or Microsoft Azure, allow users to rent large, powerful computers,

charging only for the time that the computers are being used. To explore the option of rent-

ing a cloud-based machine, we also executed Case A through Google Cloud Platform (GCP).

The number of cores available, RAM, and processor speeds of the PC, HPC, and GCP ma-

chines are listed in Table 5. Case A was run with varying number of cores on each platform.

3 Results and Discussion

3.1 Results from demonstration cases

Figures 10, 11, 12 show the results of the three control scenarios applied to the three demon-

stration cases. In all cases, Cases A, B, and C, there are times where flooding occurred at

one or more nodes. Flooding occurs in SWMM5 when the depth of water at a given node

exceeds the maximum depth of that node. When this occurs, the depth in SWMM5 at that

node is recorded as the maximum depth which is why some of the depth values in the Fig-

ures 10, 11, 12 appear capped.

Figure 10 shows the results from the three control scenarios for Case A. In the rules-

based and MPC scenarios, the control policies kept the valves closed more on average, thus

retaining more water in the storage units and preventing flooding at Node J1 (see Figure 10
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A and B). The water level at St2 reaches much higher values in the rules-based and swmm

mpc scenarios (peak of 1.16 m (3.80 ft) and 1.14 m (3.73 ft)) compared to the passive (peak

of 1.05 m (3.45 ft)). In Case A, the rules-based control and the swmm mpc scenario elimi-

nated flooding altogether. This was the simplest control case and the algorithm in swmm

mpc was able to find a policy that eliminated flooding by hour 3. This policy resulted in a

cost function equaling zero which stopped the algorithm from running. Therefore, after hour

4, the orifice settings were unchanged in the swmm mpc scenario. The rules-based scenario

in Figure 10 causes oscillation around the 80% full depth at J1 (0.49) as a result of the con-

trol rules.

For Case B, a target water depth at St1 and St2 of 0.52 m was introduced and the ini-

tial depth at St1 and St2 was 0.52 m. With more water in the system to begin with, much

more flooding occurred in general compared to Case A and neither the rules-based nor the

swmm mpc control was not able eliminate flooding. The swmm mpc scenario, however, re-

duced flooding by 90% compared to the passive where the rules-based reduced flooding by

only 54%. The main reason for the better performance by the swmm mpc was its ability to

take action proactively and prioritize reducing flooding over maintaining the target depth.

The swmm mpc algorithm allowed the water level at St2 to go well below the target depth

at the beginning of the simulation to create more storage for when the peak of the runoff ar-

rived. Additionally the swmm mpc policy held more water back in St1 than the rules-based

scenario, more fully utilizing the storage available in the larger of the two storage units. Be-

cause the rules in the rules-based scenario maintained the water at the target depth in St2,

there was not enough storage available to handle the peak of the runoff and the storage unit

was overtopped.

The addition of the tidal boundary condition in Case C caused increased flooding for all

three control scenarios. Again, the swmm mpc was able to significantly reduce flooding, re-

sulting in a 74% reduction compared to the passive scenario. The swmm mpc policy held

even more water back, and held it back for longer in St1 in Case C compared to Case B.

This reduced flooding in J1 during the second high tide which occurred around 19 hours.

The swmm mpc policy did not outperform the rules-based scenario by as much as Case B
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Figure 10: Depth and flooding at system nodes for Case A

- the rules-based scenario reduced flooding by 58% in Case C. A possible explanation for is

that, with the additional water volume from the tidal condition, the system may be reaching

its physical limits in terms of total available storage.

3.2 Computational cost of swmm mpc

Figure 13 shows the wall-clock times for executing swmm mpc for Case C on a PC, an HPC,

and GCP machines with a varying number of processing cores. The simulation had 96 con-

trol time steps (15 minute resolution for 24 hours). If used for online MPC in a real case,

the wall-clock time required for one time step would need to be less than the time step itself,

otherwise, the setting for the next time step would not be determined before it would need
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Figure 11: Depth and flooding at system nodes for Case B
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Figure 12: Depth and flooding at system nodes for Case C
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to be implemented.

The fastest wall-clock time using the PC was 214.7 minutes using eight computational

cores (the maximum available). Therefore the time required to find the best control policy

at each control time step was 2.2 minutes. In this case, the PC’s computing power was suf-

ficient (2.2 minutes per time step compared to 15 minute time step). For the HPC, the best

case scenario was a wall-clock time of 34.8 minutes (0.36 minutes per time step) using the

maximum of 28 computational cores. Although the minimum wall-clock time was achieved

using all 28 cores on the HPC, the improvement in wall-clock time when increasing the num-

ber of cores past 16 was minimal. This is a relevant consideration when using a shared HPC

resource where requesting more computational cores likely corresponds to a longer wait in

the job queue.

The wall-clock times using GCP were much lower than the PC or HPC. In the best case,

32 vCPUs and 120 GB of RAM were used for a wall-clock time of 25.6 minutes (0.27 min-

utes per time step). This is a 1.3x speed-up compared to the fastest run using the HPC

and almost a 8x speed-up compared to the fastest PC run. The financial cost of renting this

machine was $1.71 per hour. The GCP hardware is newer which may explain why the wall-

clock time is lower even when the same number of computational cores was used.

3.3 Practical considerations

3.3.1 Computational costs

The execution times for our example use case were viable, however, a more complex model,

a smaller control time step, or different EA parameters (more generations or individuals per

generation) would increase the execution time. For example, the demonstration SWMM5

model required only one second or less to execute. The swmm mpc workflow executed that

model thousands of times. In our cases, the model was run more than 70,000 times (24-hour

simulation x 4 time steps per hour x 8 generations per time step x approx. 80 individuals

per generation) therefore requiring approximately 70,000 seconds of computation time (if

each model takes approx. 1 second to run). If a more sophisticated SWMM5 model instance
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Figure 13: Wall-clock run times for Case C with varying number of computational cores us-
ing a PC and a high performance computer.

were used, the execution time would be much higher. For example, in related research we are

using a more complex model of the stormwater infrastructure for a neighborhood in Norfolk,

Virginia that requires close to 60 seconds to execute for a 24-hour simulation time period.

The wall-clock time for swmm mpc for this more complex model would increase by around

a factor of 60 compared to the simple cases demonstrated here. Assuming a linear increase,

the wall-clock time would be 132 minutes/time step using the PC, thus rendering it unfea-

sible for running on a PC. Again assuming linear scaling, using 32 cores on GCP, the same

simulation would execute at a rate of 16.7 minutes/time step, just over the 15 minute times

step cutoff. To be feasible with this setup, fewer generations or fewer individuals per genera-

tion would have to be used to reduce the number of model runs per time step.

Another factor to consider for practical use of swmm mpc is the control horizon and the

number of control structures whose policies will be found using swmm mpc. These two pa-

rameters determine the size of the overall control policy and therefore the solution space

that the EA will be searching. In our example use case, the control policy was a vector of 24

bits. Therefore, there were 224 possible solutions. This solution space, already large, would

double if the control time step were 7.5 minutes instead of 15, or if the control horizon were
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two hours instead of one. A larger solution space would result in a larger computation time

to reach an effective solution.

Given the computational cost of the current swmm mpc approach, the required com-

plexity (and thus the wall-clock time) of the process model is an important consideration.

A scenario with a simple process model (approx. 1 second wall-clock time) can be feasibly

executed with just a PC, as shown in the system demonstration. However, a simple model

may not represent complex urban drainage systems well enough to produce an effective con-

trol policy. Defining what level of detail is sufficient in the process model may be difficult,

however, as it may depend on the objective of the modeling, a certain storm event, or the

system itself. There is a trade-off among 1) model complexity, 2) model run time, and 3) the

model’s ability to effectively simulate the relevant parts of the system. This trade-off is very

relevant to the use of process models in a receding control horizon approach such as MPC

and needs further research.

If a more complex model is needed, municipalities or others needing cloud-based resources

to run swmm mpc must consider the financial cost of renting a machine. Using the 32-core

machine on GCP, the cost of finding the control policy for the 24-hour time span in Case C

in our system demonstration was very low, $0.72. This was, however, for one simple case.

The cost would be higher with more complex scenarios such as a more complex model, a

shorter time step, or more controls. If we assume the use of a more complex model, which

takes 60 seconds to run, would increase running time by a factor of 60, that would also in-

crease the cost by a factor of 60 to $43.78. However, the system would only run if there were

a storm in the forecast.

Given the computational cost of running the evolutionary algorithm, other, more efficient

alternatives should be explored in future research. One possible alternative that is reinforce-

ment learning (Kaelbling et al., 1996). This approach may be able to converge to a solution

more quickly than an evolutionary algorithm and thus reduce run times. Another future im-

provement could be adding a penalty to changing actuator states and/or using another dy-

namic optimizer to have a less erratic behavior in the actuators.
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3.3.2 Data and modeling uncertainty

The current design of swmm mpc does not take into account the uncertainties in the system

states,the forecast data and the process model. Because the SWMM5 engine is used to sim-

ulate both the urban drainage system and the process model, the process model assumes 1)

perfect knowledge of the urban drainage system states, 2) perfect knowledge of future dis-

turbances, and 3) perfect modeling of the urban drainage system. In a real implementation,

there would be significant uncertainties in each of these aspects. In a real implementation,

knowledge of the system states is available only from a limited number of sensors in the sys-

tem. This data, limited in spatial and temporal resolution, would need estimated using a

state estimator to set all the states in the system as is done in power systems (Abur and

Expósito, 2004). More work will need to be done to investigate ways of incorporating sen-

sor values to set the process model’s initial conditions. Additionally, in the current case, the

future disturbances (i.e., primarily rainfall) are known perfectly, when in reality, there is a

large amount of uncertainty involved with forecasting such disturbances (see for example,

Hong and Pai (2007), Valverde Ramı́rez et al. (2005), and Bellon and Austin (1984) regard-

ing uncertainty in forecasting rainfall).

In addition to data uncertainties seen in reality, swmm mpc does not currently consider

gaps between the simulated behavior through the SWMM5 process model and the actual be-

havior of the urban drainage system, but assumes that simulation and reality are the same.

In actuality, the gap between simulation and reality in urban drainage systems can be sig-

nificant (see for example Mark et al. (2004)). On a related note, the ability for swmm mpc

to find a control policy that is effective for the urban drainage system is directly related to

how well the process model represents the system. Given the simulation and data gaps seen

in reality, the simulated results through policies found by swmm mpc should be considered

as the best case scenario and if the same policies were used in practice, any effects should be

expected to be seen to a lesser extent. Further research is needed to determine the degree to

which the results from the policies implemented in reality will differ compared to the simula-

tion results.
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swmm mpc finds only the one best control policy which minimizes a single cost value

defined by a set of weights for various objectives. This is also known as the weighted sum

method for multi-objective optimization (Marler and Arora, 2010). This method, has some

disadvantages including the inability to explore the solutions that have similar performance.

The set of solutions that have similar overall performances with trade-offs between the dif-

ferent objectives (i.e., in our case reducing flooding and maintaining target water levels)

is called the Pareto optimal front (Das and Dennis, 1997). Future work could be done in

swmm mpc to support the exploration of Pareto optimal solutions and the trade-offs be-

tween objectives.

4 Conclusions

A free and open-source software package, swmm mpc, was developed which computes a con-

trol policy for controls within an urban drainage system model. The widely-used United

States Environmental Protection Agency Stormwater Management Model Version 5 (SWMM5)

is used to simulate the urban drainage system and the process model. A third-party Python

library, pyswmm, is a critical component of the swmm mpc workflow allowing a SWMM5

model to be run step-by-step in a Python environment. An evolutionary algorithm was used

to find an effective control policy at each time step. When tested using a simple SWMM5

model, the swmm mpc software was able to produce control policies that met objectives in-

cluding minimizing flooding and minimizing deviation from target water levels at certain

nodes in the system.

swmm mpc leverages parallel computing to run the computationally expensive evolution-

ary algorithm more quickly. The wall-clock time for a simple SWMM5 model for a 24-hour

simulation was reduced from 307 minutes to 214 minutes when the computational cores on a

desktop PC were increased from two to eight. The wall-clock time was reduced even further

to 34.8 minutes on a 28-core high-performance computer and to 25.6 minutes on a 32-core

machine rented through the Google Cloud Platform. Parallel computing makes swmm mpc

feasible for use in real-time control with complex process models.
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As the average storm intensity is projected to increase, and sea levels are expected to

continue to rise, cities globally and especially on the coasts, can expect more flood condi-

tions. Active control of urban drainage systems may be one of an array of approaches that

can be used to confronting these challenges. The swmm mpc software we have developed can

be used, built-from, and improved upon as a tool to assist decision-makers and researchers in

finding effective control policies for urban drainage systems.

Acknowledgments

We acknowledge the support of awards 1735587 (Critical and Resilient Infrastructure Sys-

tems - CRISP) and 1737432 (Smart and Connected Communities - S&CC) from the United

States National Science Foundation. We thank Bryant McDonnell, one of the main develop-

ers of pyswmm, for his assistance in adding the hotstart file functionality to OWA-SWMM5

and pyswmm. We also thank the consultants of the University of Virginia Graduate Writ-

ing Lab including Kelly Cunningham, its director, for their helpful feedback in preparing the

manuscript.

References

Abur, A. and Expósito, A. G. (2004). Power System State Estimation, volume 24 of Power
Engineering (Willis). CRC Press.

Afram, A. and Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems
– A review of model predictive control (MPC). Building and Environment, 72:343–355.

Bellon, A. and Austin, G. (1984). The accuracy of short-term radar rainfall forecasts. Jour-
nal of Hydrology, 70(1-4):35–49.

Berggren, K., Olofsson, M., Viklander, M., Svensson, G., and Gustafsson, A.-M. (2012). Hy-
draulic Impacts on Urban Drainage Systems due to Changes in Rainfall Caused by Cli-
matic Change. Journal of Hydrologic Engineering, 17(1):92–98.

Bonnin, G., Martin, D., Lin, B., Parzybok, T., Yekta, M., and Riley, D. (2018). POINT
PRECIPITATION FREQUENCY ESTIMATES, Norfolk, Virginia, USA. https://hdsc.
nws.noaa.gov/hdsc/pfds/pfds printpage.html?lat=36.8661&lon=-76.2890&data=depth&
units=english&series=pds. Online; accessed 2018-10-04.

Burger, G., Sitzenfrei, R., Kleidorfer, M., and Rauch, W. (2014). Parallel flow routing in
SWMM 5. Environmental Modelling & Software, 53:27–34.

35

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=36.8661&lon=-76.2890&data=depth&units=english&series=pds
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=36.8661&lon=-76.2890&data=depth&units=english&series=pds
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=36.8661&lon=-76.2890&data=depth&units=english&series=pds


Camacho, E. F. and Bordons, C. (2007). Model predictive control. Springer London Limited.

Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., and Martı, J. (2004). Op-
timal control of urban drainage systems. A case study. Control Engineering Practice,
12(1):1–9.

Darsono, S. and Labadie, J. W. (2007). Neural-optimal control algorithm for real-time regu-
lation of in-line storage in combined sewer systems. Environmental Modelling & Software,
22(9):1349–1361.

Das, I. and Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums
of objectives for pareto set generation in multicriteria optimization problems. Structural
optimization, 14(1):63–69.
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Appendix A: Partial model output for Case C

2018-02-06 05:30:23 (SIMULATION TIME STEP)
ngen: neval: avg: min: max:
GENERATION
NUMBER

NUMBER OF
INDIVIDUALS
EVALUATED

AVERAGE COST MINIMUM COST MAXIMUM COST

0 120 564.909 181.363 678.178
1 72 471.969 180.365 679.177
2 66 334.797 167.372 683.19
3 70 232.48 167.372 666.987
4 73 225.56 167.372 599.112
5 83 248.04 166.372 631.004
6 81 221.303 166.372 595.068
7 73 208.68 166.372 651.105
8 77 237.176 166.372 627.172
[0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0,
0, 1] (BEST INDIVIDUAL)
166.37201850180506 (COST FOR BEST INDIVIDUAL)

2018-02-06 05:45:23
gen nevals avg min max
0 120 548.32 174.402 689.046
1 76 429.162 174.402 590.118
2 76 305.889 174.402 598.114
3 80 228.434 174.401 682.007
4 72 225.899 174.401 689.048
5 74 229.367 174.401 621.119
6 87 220.51 174.401 586.079
7 77 227.35 174.401 599.137
8 78 212.65 174.401 688.047
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1]
174.4006921317475

2018-02-06 06:00:23
gen nevals avg min max
0 120 597.805 272.441 753.251
1 76 494.962 271.443 665.196
2 64 378.9 271.441 764.146
3 78 338.357 270.439 762.128
4 77 335.544 270.438 762.134
5 67 318.02 270.438 741.26
6 65 313.463 269.442 762.142
7 83 319.393 269.442 750.231
8 66 294.18 269.442 659.137
[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1]
269.44167254174397
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2018-02-06 06:15:23
gen nevals avg min max
0 120 564.68 185.448 696.096
1 78 466.118 184.447 675.068
2 69 367.825 184.447 614.188
3 79 259.746 184.447 624.176
4 60 211.748 184.447 603.112
5 73 232.349 184.447 642.16
6 84 264.941 184.444 702.072
7 64 222.8 184.444 599.161
8 54 231.009 184.444 636.161
[1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
184.44445484477893

2018-02-06 06:30:23
gen nevals avg min max
0 120 499.148 88.422 585.175
1 76 397.943 88.422 587.173
2 67 240.683 83.4249 557.114
3 77 148.278 76.4327 587.171
4 79 168.824 70.4352 579.199
5 77 144.545 70.4351 564.103
6 61 132.675 69.4349 547.064
7 72 123.795 69.4322 541.054
8 60 111.08 68.4327 540.06
[1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
68.43274713740458

2018-02-06 06:45:23
gen nevals avg min max
0 120 501.842 115.438 626.053
1 73 362.999 115.434 595.086
2 77 232.599 115.434 598.084
3 71 178.082 115.434 622.092
4 64 165.06 115.434 593.167
5 59 172.194 115.434 630.046
6 68 174.713 115.433 607.071
7 79 169.749 115.433 618.175
8 60 152.37 115.433 572.129
[1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1]
115.43347531461762

2018-02-06 07:00:23
gen nevals avg min max
0 120 512.675 107.443 606.166
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1 73 396.119 103.448 595.057
2 66 229.523 103.433 587.115
3 75 147.566 103.433 543.098
4 74 134.32 103.433 576.133
5 56 146.722 103.433 546.091
6 75 163.145 103.433 603.084
7 82 161.167 103.433 600.099
8 61 154.115 103.433 583.158
[0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
103.43264931237721

2018-02-06 07:15:23
gen nevals avg min max
0 120 499.123 100.436 613.156
1 67 374.813 98.4382 575.12
2 66 279.977 97.4315 571.23
3 79 174.216 97.4315 565.137
4 62 140.936 97.4315 567.141
5 84 165.622 97.4315 569.233
6 73 161.442 97.4315 562.058
7 71 128.182 97.4315 589.085
8 70 155.043 97.4315 572.229
[0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
97.43146011964107

2018-02-06 07:30:23
gen nevals avg min max
0 120 470.006 78.431 549.049
1 60 343.159 61.4292 536.06
2 70 217.512 61.4268 532.053
3 62 105.544 61.4268 548.098
4 73 123.517 60.4257 524.053
5 89 124.792 60.4284 542.193
6 65 123.809 60.4284 522.114
7 86 140.979 60.4284 526.128
8 80 117.129 60.4284 547.174
[1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]
60.42565536437247

2018-02-06 07:45:23
gen nevals avg min max
0 120 439.879 201.14 540.068
1 84 307.82 57.4158 519.129
2 76 231.506 57.4158 525.028
3 73 194.483 48.4244 506.048
4 80 124.912 46.4245 512.19
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5 63 102.983 46.4245 504.226
6 70 119.73 46.4245 533.08
7 74 122.065 46.4245 525.09
8 74 111.302 46.4245 529.082
[0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
46.42454059609455

2018-02-06 08:00:23
gen nevals avg min max
0 120 422.163 44.4102 521.154
1 67 308.373 36.4165 501.066
2 68 168.429 36.4165 493.068
3 75 97.0566 35.4167 486.044
4 81 102.572 35.4167 503.086
5 74 93.64 34.4206 490.196
6 78 88.0039 34.4206 509.173
7 74 81.4532 34.4195 524.153
8 71 81.02 34.4195 506.064
[0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
34.41949582463466

2018-02-06 08:15:23
gen nevals avg min max
0 120 403.599 34.4007 487.029
1 76 274.299 25.4156 492.031
2 71 138.518 21.4166 483.061
3 75 68.6358 20.4164 459.132
4 66 76.4944 20.4159 480.098
5 61 75.4074 19.417 458.072
6 83 64.693 19.417 477.069
7 70 53.7713 19.417 471.097
8 83 59.6452 19.417 470.055
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
19.41703181336161

2018-02-06 08:30:23
gen nevals avg min max
0 120 388.682 24.4079 484.176
1 74 258.952 19.4132 470.036
2 73 155.44 19.4132 460.045
3 82 80.9105 17.4134 462.079
4 64 68.3767 17.4134 467.127
5 79 80.5151 17.4134 493.154
6 61 70.7222 17.4134 490.161
7 78 82.9081 17.4134 475.086
8 67 79.3359 17.4134 469.048
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[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
17.41342510775862

2018-02-06 08:45:23
gen nevals avg min max
0 120 389.01 23.393 478.175
1 58 245.894 23.393 452.051
2 71 128.923 23.393 447.043
3 75 79.3091 23.393 450.043
4 67 64.3669 23.393 448.057
5 62 55.7484 23.393 434.062
6 71 65.7564 23.393 453.05
7 68 75.5935 23.393 454.105
8 70 69.6542 23.393 468.069
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
23.392963855421687

2018-02-06 09:00:23
gen nevals avg min max
0 120 375.363 37.3593 465.164
1 68 264.254 36.3588 441.062
2 77 138.681 24.3764 434.05
3 67 67.0033 15.3868 436.049
4 80 62.5066 15.3868 435.037
5 72 57.3331 15.3868 477.131
6 48 49.9949 15.3868 434.05
7 77 53.1511 15.3868 442.038
8 66 68.01 15.3868 446.082
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
15.386766146993319

2018-02-06 09:15:23
gen nevals avg min max
0 120 345.839 10.3741 452.131
1 62 221.061 3.40155 431.087
2 72 126.514 3.40155 442.044
3 73 75.1882 3.40155 442.153
4 72 27.9766 3.38119 441.145
5 88 28.6825 3.38119 429.059
6 72 51.2197 3.38119 422.098
7 77 28.9124 3.38119 425.036
8 67 53.9582 3.38119 428.023
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
3.381190826727067

2018-02-06 09:30:23
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gen nevals avg min max
0 120 337.09 2.37592 431.106
1 72 181.769 2.37592 417.048
2 84 75.5149 2.37592 428.07
3 74 35.3089 2.37592 403.051
4 79 46.0723 2.37592 416.038
5 72 34.4716 2.37592 399.068
6 76 49.5477 2.37592 420.091
7 82 47.3834 2.37592 417.031
8 86 53.2014 2.37592 412.063
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
2.375915898617511

2018-02-06 09:45:24
gen nevals avg min max
0 120 337.087 19.3644 434.13
1 88 214.733 12.3533 408.041
2 70 96.7725 9.35952 438.134
3 70 50.5423 6.38346 420.071
4 65 43.8474 2.36987 400.052
5 78 58.5564 2.36987 440.124
6 72 44.3703 2.36987 402.043
7 79 45.0036 2.36987 404.048
8 85 46.8888 2.36987 407.023
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
2.3698710433763193

2018-02-06 10:00:24
gen nevals avg min max
0 120 335.603 21.3381 420.171
1 88 232.447 18.3543 418.114
2 76 136.065 8.37324 425.125
3 77 65.8346 8.37324 399.039
4 74 49.8831 2.3832 390.046
5 72 50.8198 2.36244 398.032
6 76 38.3532 2.36244 394.052
7 64 39.8222 2.36244 398.027
8 81 41.8216 2.36244 401.043
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
2.3624373508353225

2018-02-06 10:15:24
gen nevals avg min max
0 120 321.095 4.34934 420.171
1 77 190.977 4.34934 390.029
2 74 75.5242 2.35571 394.026
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3 86 44.4021 2.35571 397.067
4 73 41.2572 2.35571 402.065
5 68 34.4718 2.35571 389.054
6 77 42.303 2.35571 380.047
7 67 52.4357 2.35571 397.054
8 84 41.7137 2.35571 413.099
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
2.3557102065613607

2018-02-06 10:30:27
gen nevals avg min max
0 120 317.061 8.33737 413.098
1 76 198.53 8.33737 392.079
2 62 78.3793 8.33737 417.115
3 77 52.1804 2.34777 394.094
4 73 42.1722 2.34777 385.039
5 72 48.8391 2.34777 386.065
6 73 27.2234 2.34777 376.042
7 67 48.1501 2.34777 385.079
8 75 44.7726 2.34777 386.033
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
2.347769801980198

2018-02-06 10:45:27
gen nevals avg min max
0 120 307.534 18.8637 401.099
1 73 177.447 10.8688 386.03
2 57 70.9445 10.8688 385.032
3 80 56.9697 10.8688 398.084
4 69 40.556 8.86587 373.043
5 79 46.8813 8.44402 379.029
6 75 56.2565 8.44402 414.122
7 76 43.9086 2.8747 379.031
8 64 47.1566 2.8747 394.106
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
2.8746986128625474
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