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Abstract 19 

Accurate and widely-available wetland inventories are needed for wetland conservation 20 
and environmental planning. We propose an open source, automated wetland identification model 21 
that relies primarily on Light Detection and Ranging (LiDAR) digital elevation models (DEMs). 22 
LiDAR DEMs are increasingly available and provide the resolution needed to map detailed 23 
topographic metrics and areas of likely soil saturation, but the choice of smoothing and 24 
conditioning techniques can significantly impact accuracy of hydrologic parameter extraction. So 25 
far, the effect of these preprocessing steps on wetland delineation has not been thoroughly 26 
analyzed. We test the response of a Random Forest wetland classifier, using topographic wetness 27 
index (TWI), curvature, and cartographic depth-to-water index (DTW) as input variables, to 28 
combinations of smoothing techniques (none, mean, median, Gaussian, and Perona-Malik) and 29 
conditioning techniques (Fill, Impact Reduction Approach, and A* least-cost path analysis) for 30 
four sites in Virginia, USA. The Random Forest model was configured to account for imbalanced 31 
datasets and manually surveyed wetlands were used for verification. Applying Perona-Malik 32 
smoothing and A* conditioning yielded the highest accuracy across all sites and considerably 33 
reduced model runtime. We found that models could be further improved by individualizing the 34 
smoothing method and scale to each input variable. Using only topographic information, the 35 
wetland identification model could accurately detect wetlands in all sites (81-91% recall). Model 36 
overprediction varied across sites, represented by precision scores ranging from 22% to 69%. In 37 
its current form, the wetland model shows strong potential to support wetland field surveying by 38 
identifying likely wetland areas.  39 

Plain Language Summary 40 

Accurate wetland inventories are needed for wetland protection and conservation. We 41 
propose an automated tool that locates wetlands using Light Detection and Ranging (LiDAR) 42 
digital elevation models (DEMs). LiDAR DEMs are increasingly available and show elevation 43 
changes that likely affect soil saturation. However, the ability of LiDAR DEMs to describe 44 
saturated areas is affected by smoothing and conditioning. Smoothing blurs DEMs to remove 45 
elevation changes that are too small to indicate features of interest, and conditioning ensures 46 
accurate simulation of hydrologic flow paths. The effects of different smoothing and conditioning 47 
methods on wetland mapping have not been studied. We tested how our wetland tool is influenced 48 
by five smoothing techniques and three conditioning techniques for four sites in Virginia, USA. 49 
We found that Perona-Malik smoothing and A* conditioning improved predictions and reduced 50 
tool runtime for all sites. Also, we found predictions could be further improved by varying 51 
smoothing parameters specific to each input. Using only elevation information, the wetland tool 52 
predicted 81-91% of true wetlands across our sites. The proportion of wetland predictions that 53 
were correct varied (ranging from 22 to 69% across sites). Overall, the results suggest strong 54 
potential for the model to support environmental groups to delineate wetlands.  55 

1. Introduction 56 

Wetlands are important ecosystems that are threatened by anthropogenic pressures and 57 

climate change (Klemas, 2011). It is estimated that over half of the Earth’s wetlands have been 58 

destroyed since 1900 (Davidson, 2014). In the conterminous U.S., half of the wetlands have been 59 

destroyed since 1600 (Dahl et al., 1991) due to agricultural or development repurposing, pollution, 60 

and climate change (Klemas, 2011). In the U.S., federal regulations play an important role in the 61 
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protection of remaining wetlands. Specifically, Section 404 of the Clean Water Act requires 62 

environmental impact assessments prior to land development and water resources projects (Page 63 

& Wilcher, 1990). This law requires environmental planning entities to provide detailed wetland 64 

delineations to the U.S. Army Corps of Engineers (USACE), which can be time-consuming and 65 

costly to produce. There is potential for computational models to streamline the delineation process 66 

by providing accurate wetland inventories that limit manual surveying to likely wetland areas.  67 

Wetlands can be identified by common features, including the presence of hydrologic 68 

conditions that inundate the area, vegetation adapted for life in saturated soil conditions, and hydric 69 

soils (Environmental Laboratory, 1987). Remotely sensed data offer new opportunities to 70 

accurately and rapidly observe these features at varying scales (Guo et al., 2017; Lang et al., 2013; 71 

Lang & McCarty, 2014). Multispectral imagery, radar, and Light Detection and Ranging (LiDAR), 72 

data have proven useful for a range of wetland conservation applications, including wetland 73 

mapping (Guo et al., 2017). However, availability of multispectral imagery and radar at resolutions 74 

fine enough to detect small-scale wetlands is lacking, and obtaining these data can be costly. 75 

Alternatively, LiDAR emerges as a candidate for wetland identification, especially on large scales, 76 

due to its wide, and growing, availability and demonstrated benefit to wetland mapping (Kloiber 77 

et al., 2015; Lang & McCarty, 2014; Snyder & Lang, 2012). LiDAR returns can be interpolated to 78 

create high-resolution digital elevation models (DEMs), from which topographic metrics can be 79 

derived that describe flow convergence and near-surface soil moisture to indicate wetlands (e.g., 80 

Lang et al., 2013; Lang & McCarty, 2014; Millard & Richardson, 2013; Millard & Richardson, 81 

2015; O’Neil et al., 2018). Additionally, studies have demonstrated the benefit of LiDAR DEM 82 

metrics as input variables to the Random Forest (RF) classification approach (Breiman, 2001) for 83 

wetland mapping and classification (e.g., Deng et al., 2017; Kloiber et al., 2015; Millard & 84 

Richardson, 2013; Millard & Richardson, 2015; O’Neil et al., 2018; Zhu & Pierskalla, 2016). 85 

Deriving topographic metrics from higher resolution DEMs (i.e., < 2 m) has been shown to 86 

increase accuracy of saturation extent mapping (Hogg & Todd, 2007; Lang et al., 2013; Millard & 87 

Richardson, 2015). However, the replacement of conventional DEMs with LiDAR DEMs requires 88 

changes to the traditional hydrologic terrain processing workflow: smoothing and hydrologic 89 

conditioning (Lidberg et al., 2017; Passalacqua et al., 2010a; Sangireddy et al., 2016; Woodrow et 90 

al., 2016). 91 

DEM smoothing addresses microtopographic noise, which is ubiquitous in high-resolution 92 

DEMs and can be the product of erroneous data or true variations in the elevation of the vegetated 93 

ground surface (Jyotsna & Haff, 1997). Identifying and filtering noisy data is challenging as it 94 

risks artificially modifying the true land surface or degrading features of interest, and no widely-95 

agreed upon approach currently exists (Passalacqua et al., 2015; Pelletier, 2013; Richardson et al., 96 

2009). Although many smoothing techniques have been proposed, this study focuses on methods 97 

commonly used in related studies: mean, median, Gaussian, and Perona-Malik filtering. Mean and 98 

median filtering have been shown to improve hydrologic parameter extraction from high-99 

resolution DEMs (e.g., Buchanan et al., 2014; O’Neil et al., 2018; Sangireddy et al., 2016; 100 

Sørensen et al., 2006), whereas Gaussian and Perona-Malik filtering are commonly incorporated 101 

into stream localization models (e.g., Hooshyar et al., 2016; Lashermes et al., 2007; Passalacqua 102 

et al., 2010a, 2010b, 2012; Pelletier, 2013; Sangireddy et al., 2016).   103 
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DEM conditioning resolves topographic depressions prior to calculating flow paths and 104 

flow accumulation (Jenson & Domingue, 1988; O’Callaghan & Mark, 1984). Topographic 105 

depressions can represent both erroneous data and actual features (Lindsay & Creed, 2005), and 106 

their presence interferes with overland flow path modeling by accumulating water, creating flow 107 

path discontinuities, and negatively influencing modeled watershed processes (Grimaldi et al., 108 

2007; Lindsay, 2016; Lindsay & Creed, 2005). Furthermore, sensitivity of hydrologic parameter 109 

extraction to conditioning technique increases significantly with DEM resolution, making an 110 

evaluation of their effects on hydrologic model outcomes especially important for LiDAR DEM 111 

applications (Woodrow et al., 2016). Common conditioning techniques include traditional 112 

depression filling, breaching, stream burning, and least-cost path algorithms. In this study, 113 

evaluated techniques are narrowed to those that require only elevation data and have been used for 114 

related studies (e.g., Metz et al., 2011; Lidberg et al., 2017): traditional depression filling (Fill), 115 

impact reduction approach (IRA), which combines filling and breaching, and least-cost path search 116 

(A*).  117 

The choice of smoothing and conditioning techniques can significantly impact the accuracy 118 

of derived hydrologic parameters, however, there is a research gap regarding the compound effects 119 

of these processes on subsequent wetland identification. Related studies focusing on either 120 

smoothing or conditioning have been largely limited to stream delineation applications. For 121 

example, Passalacqua et al. (2010a) found that, compared to Gaussian smoothing, the Perona-122 

Malik method was more advantageous for extraction of channel networks and cross sections, 123 

especially in low slope areas. Pelletier (2013) found Perona-Malik, Gaussian, and an additional 124 

method, Optimal Weiner, filtering all to be effective in suppressing high-resolution DEM noise 125 

for channel network mapping, with tradeoffs between the three depending on the landscape and 126 

application. Moreover, Metz et al. (2011) compared the abilities of the Fill, IRA, and A* methods 127 

to resolve depressions in coarser, radar-base DEMs, and found that the A* approach provided more 128 

accurate drainage networks. In a related study, Lidberg et al. (2017) concluded that, compared to 129 

filling techniques, breaching created the most accurate stream networks from LiDAR DEMs and 130 

that differences increased with DEM resolution. A key difference in stream network delineation 131 

and wetland delineation is that the former emphasizes connected linear features, whereas wetlands 132 

are areal features that may contain irregular topography (e.g., hummocks and hollows), and 133 

therefore have irregular and diffuse boundaries. 134 

In this study, we address this research gap by performing a thorough analysis of the 135 
compound effects of smoothing and conditioning on wetland delineations and the RF model used 136 
to generate them. We test the response of a LiDAR DEM-based RF wetland model to unique 137 
combinations of preprocessing techniques for a range of ecoregion, topography, and built 138 
environments for four sites of Virginia. We examine the sensitivity of our model to mean, median, 139 
Gaussian, Perona-Malik, and no filter, as well as Fill, IRA, and A* conditioning techniques. We 140 
train and test the RF model, tuned for the imbalanced wetland and nonwetland distributions in each 141 
site, using manually surveyed wetlands provided by the Virginia Department of Transportation 142 
(VDOT).  143 
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2. Study areas and input data 144 

2.1. Study areas 145 

This analysis was completed for four study areas in Virginia, USA (Figure 1a). For each 146 
study area, the available data includes the extents of wetland surveys and the HUC 12 watershed 147 
(USGS, 2013) that encompasses the surveys (Figure 1b). The HUC 12 watersheds served as the 148 
processing extents for model inputs and surveyed areas delimit the extents of verification data and, 149 
therefore, model output. Surveyed areas are referred to as the study sites. The study areas span 150 
four level III ecoregions of Virginia. Site 1 is located in the Ridge and Valley ecoregion (67), 151 
located between mountainous regions and is characterized by forested ridges and lowland 152 
agricultural valleys. Site 2 and Site 3 are located in the Northern Piedmont ecoregion (64), which 153 
is a transitional region between low mountains and the flat, coastal Piedmont area. Site 4 spans the 154 
Southeastern Plains (65) and the Mid-Atlantic Coastal Plain (63). The Southeastern Plains are 155 
comprised of cropland, pasture, woodland, and forest, and the subsurface is predominantly sands, 156 
silts, and clays. The Mid-Atlantic Coastal plain is characterized by low, nearly flat plains and 157 
poorly drained soils, and swampy and marshy areas are common (EPA, 2013). Table 1 provides 158 
additional characteristics for the study sites. Site 1 and Site 2 contain more impervious area than 159 
the other two sites, which are dominated by forested land. The steepest slopes are found in Site 3, 160 
where the average slope (0.14 m/m) is nearly twice as steep as or steeper than the average slope 161 
for the other sites. In contrast, Site 4 has the mildest slopes with the 90th percentile slope value 162 
(0.06 m/m) being less than the average slope in the other sites. While sites 1, 2, and 3 have highly 163 
imbalanced wetland to nonwetland distributions, wetlands are much more widespread in Site 4, 164 
which is characteristic of the Mid-Atlantic Coastal Plain. While there is a mix of wetland types 165 
across sites, Site 3 contains the largest distribution of streams or riverine wetlands, followed by 166 
Site 1. Note that all surveyed wetland types were merged into a single wetland category prior to 167 
use as verification data. 168 
 169 



Confidential manuscript submitted to Water Resources Research 

 

 170 
Figure 1. Four study areas spanning four level III ecoregions in Virginia, USA (a). Each study area includes the 171 
wetland survey limits, referred to as study sites, and the encompassing HUC 12 watershed, used as the processing 172 
extent (b).  173 
Ecoregion data source: US EPA Office of Environmental Information 174 
Aerial imagery data source: NAIP Digital Ortho Photo Image. 175 
 176 
 177 
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Table 1. Characteristics of each study site, including dominate land cover, topographic characteristics, and surveyed 178 
wetland distributions. 179 

  Site 1 Site 2 Site 3 Site 4 

Dominating Land Covera 

Turf Grass (35%), 
Developed (22%), 
Cultivated (20%), 
Forested (19%) 

Developed (36%), 
Turf Grass (31%), 

Forested (21%) 

Forested (73%), 
Developed (9%), 
Cultivated (9%) 

Forested (66%), 
Cultivated (18%), 

NWI Wetland 
(9%) 

Verification Area (km2) 2.8 1.6 1.8 5.6 

Min. Elevationb (m) 209 46 101 10 

Max. Elevation (m) 241 107 178 42 

10th Percentile Slopec (m/m) 0.02 0.01 0.04 0.01 

90th Percentile Slopec (m/m) 0.14 0.20 0.26 0.06 

Mean Slopec (m/m) 0.07 0.08 0.14 0.03 

Wetland : Nonwetland (m2/m2) 0.03 0.06 0.02 0.42 

Dominating Cowardin Wetland 
Type(s)d 

Palustrine 
Emergent (50%), 
Streams (20%)e 

Palustrine 
Forested (44%), 

Palustrine 
Emergent (33%) 

Palustrine 
Forested (56%), 
Streams (43%) 

Palustrine 
Forested (88%), 
Palustrine Shrub 

(9%) 
a Source: Virginia Information Technologies Agency (VITA) Land Cover classifications 
(https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/land-cover/). 
b In sites 1, 2, and 4, verification area varied slightly due to edge effects of applying filtering to DEMs. 
c Slope information was calculated from LiDAR DEMs resampled to a 5 m resolution to reduce effect of raw DEM 
noise on slope information. 
d Values are approximate and according to VDOT wetland surveying reports. 
e Wetland type for remaining 30% of wetland area was not reported. 

2.2.Input data 180 

This study used publicly available LiDAR DEMs obtained from the Virginia Information 181 
Technologies Agency (VITA) (VITA, 2016). VITA LiDAR DEMs are provided in geotiff format 182 
and are hydro-flattened, bare-earth DEMs. The LiDAR data used were collected and processed 183 
between 2010 and 2015 and have horizontal resolutions ranging from 0.76 m to 1.5 m. Verification 184 
data for this study were provided by VDOT in the form of georeferenced wetland delineations and 185 
survey limits, in polygon vector format. All verification wetlands were manually surveyed during 186 
summer months (May – August) between 2013 and 2016 by professional wetland scientists in 187 
compliance with transportation planning permitting. Wetland delineations for sites 2, 3, and 4 were 188 
also jurisdictionally confirmed by the USACE. Binary wetland/nonwetland geotiffs were created 189 
from these data, with resolutions matching those of the site LiDAR DEMs. Visual analyses of 190 
Google Earth images showed that the study site landscapes changed minimally between LiDAR 191 
acquisition and wetland delineation timeframes. 192 

3. Methods 193 

 The wetland identification algorithm was executed for each unique combination of 194 
smoothing and conditioning, producing 15 results for each site. In the following sections, we first 195 
outline the wetland identification workflow and then describe the workflow processes and 196 
parameters in greater detail.  197 



Confidential manuscript submitted to Water Resources Research 

 

3.1. Overview of the wetland identification model 198 

 The wetland identification model is an open source, automated workflow consisting of 199 
three main parts: preprocessing, input variable calculation, and classification and accuracy 200 
assessment (Figure 2). Input data required include high-resolution DEM data and wetland 201 
delineations to serve as verification data, both in geotiff format. Final model outputs are geotiff 202 
wetland predictions and an accuracy report. In the preprocessing phase, the input DEM is first 203 
smoothed and then conditioned by the set of methods listed in Figure 2. Both the smoothed DEM 204 
(DEMS) and the smoothed, conditioned DEM (DEMS, C) are used for calculation of the topographic 205 
wetness index (TWI), curvature, and cartographic depth-to-water index (DTW). Training data are 206 
derived from the wetland delineations given a user-defined parameter indicating the proportion of 207 
wetlands and nonwetlands to sample. These data are used to train the RF model from the merged 208 
input variables. The remaining verification data are used to perform an accuracy assessment (i.e., 209 
testing data). This workflow is implemented in Python and executed using GDAL, SciPy, GRASS 210 
GIS, Scikit-Learn, and PyGeoNet. The code for the wetland identification model is available from 211 
GitHub at https://github.com/uva-hydroinformatics/wetland_identification.  212 

 213 
Figure 2. Workflow of the wetland identification model created through this research. Each combination of 214 
preprocessing techniques (bold font) was executed for this analysis. Green shapes indicate input data, grey shapes 215 
indicate processes, yellow shapes indicate intermediate output, and red shapes indicate final output.   216 
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3.2.Preprocessing 217 

3.2.1. DEM smoothing methods 218 

In addition to no smoothing, mean, median, Gaussian, and Perona-Malik filters were used. 219 

Any DEM smoothing should be physically meaningful and serve the purpose of preserving 220 

features of interest while smoothing areas smaller than the features of interest (Passalacqua et al., 221 

2010a, 2012; Sangireddy et al., 2016). As a first step for the analyses, a generalized smoothing 222 

scheme was used where constant smoothing scales were applied to all input variables.  223 

It was assumed that features smaller than a 5m by 5m area were insignificant, as the 224 

majority (over 90%) of verification wetlands were larger than 25m2. This assumption translated to 225 

preliminary smoothing scales for mean, median, and Gaussian smoothing. Mean filtering performs 226 

a linear convolution on a user-defined N by N window, where the center pixel value is replaced 227 

with the mean of all pixels within the window. A mean filter was executed using the 228 

ndimage.uniform_filter module of the SciPy Python library (Jones et al., 2001). Similar to the 229 

mean smoothing method, median filtering is executed by replacing the center pixel value of an N 230 

by N window with the median of all pixels within the window. Unlike mean filters, median filters 231 

are minimally affected by outliers and are typically well-suited to remove salt-and-pepper type 232 

noise. Median filtering was executed using the ndimage.median_filter method of SciPy. Gaussian 233 

filtering is unique in that the scale of features smoothed is determined by a Gaussian kernel and it 234 

ensures causality. This means no spurious features are generated because any features at a coarse 235 

resolution must have a cause at finer resolutions, thus guaranteeing noise reduction as the 236 

resolution is coarsened (Koenderink, 1984; Passalacqua et al., 2010a). The Gaussian filter is 237 

defined as  238 

ℎሺ𝑥,𝑦,𝜎ሻ ൌ  ℎ௢ሺ𝑥,𝑦ሻ ∗ 𝐺ሺ𝑥,𝑦;𝜎ሻ,  (1) 
where ℎ௢ represents the unfiltered elevation at location ሺ𝑥,𝑦ሻ, ∗ represents the convolution 239 

operation, and 𝐺ሺ𝑥, 𝑦;𝜎ሻ represents the Gaussian kernel with standard deviation 𝜎. The Gaussian 240 
kernel is defined as 241 

𝐺ሺ𝑥, 𝑦;𝜎ሻ ൌ ଵ

ଶగఙమ
exp ቂെ ሺ௫మା௬మሻ

ଶఙమ
ቃ, (2) 

where larger standard deviations result in coarser output landscapes (Passalacqua et al., 2015). In 242 
line with methods used by Lashermes et al. (2007), the standard deviation parameter was 243 
calculated to be one quarter of the smoothing widths. The wetland model applied a Gaussian filter 244 
using the ndimage.gaussian_filter method of SciPy.  245 
 Unlike the above filters, which smooths data equally in all directions, Perona-Malik 246 
filtering performs a nonlinear, anisotropic diffusion. The Perona-Malik filter applied here is based 247 
on the diffusion equation initially proposed by Perona and Malik, 248 

𝜕௧ℎሺ𝑥,𝑦, 𝑡ሻ ൌ  ∇ ∙ ሾ𝑐ሺ𝑥, 𝑦, 𝑡ሻ∇ℎሿ,  (3) 
where ℎሺ𝑥, 𝑦, 𝑡ሻ is the elevation at time t, c is the diffusion coefficient, and ∇ is the gradient 249 

operator (1990). Eq. (3) is a configuration of the linear, isotropic diffusion equation (Koenderink, 250 

1984), in which the diffusion coefficient is constant in space and time. The Perona-Malik 251 

implementation varies c in space and time in order to preserve feature edges to achieve preferential 252 

smoothing (Passalacqua et al., 2010a, 2010b). While there are two possible forms of c, here we 253 

implemented  254 
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𝑐 ൌ ଵ

ଵାቀ
|∇೓|
ഊ
ቁ
మ,  (4) 

where 𝜆 is the edge stopping threshold (Perona & Malik, 1990). We chose the form of c in Eq. (4) 255 

because it was found to result in more consistent degrees of smoothing when applied to natural 256 
and urban landscapes compared to results using the alternate edge stopping function (Sangireddy 257 

et al., 2016). In addition, 𝜆 was calculated to be the 90th percentile of the gradient (i.e., slope) 258 
distribution to provide a simple first estimate of feature edges based on elevation change, as 259 
proposed by Perona and Malik (1990) and implemented by Sangireddy et al. (2016) and 260 
Passalacqua et al. (2010a) for channel network extraction. The time of forward diffusion (t in Eq. 261 
(3)) controls the rate of smoothing in the Perona-Malik method, and a higher number of iterations 262 
results in coarser smoothing. However, unlike the other smoothing methods included in this study, 263 
this smoothing parameter has no unique and uniform equivalent spatial scale (Passalacqua et al., 264 
2010a). We preliminarily set t to a value of 50 iterations, which has been shown to sufficiently 265 
remove small-scale variability from high-resolution DEMs for stream delineation (Hooshyar et al., 266 
2016; Passalacqua et al., 2010a; Sangireddy et al., 2016). To execute Perona-Malik smoothing, 267 
code from the PyGeoNet nonlinear filtering module, pyGeoNet_nonlinear_fitler.py, was 268 
implemented into the wetland model. PyGeoNet is the Python implementation of GeoNet, an open 269 
source software for automatic channel network extraction using elevation input data (Passalacqua 270 
et al., 2010a; Sangireddy et al., 2016). 271 

3.2.2. DEM conditioning methods 272 

 Hydrologic conditioning techniques are defined by their method to remove depressions to 273 
enforce downstream flow and connect flowpath grid cells (Woodrow et al., 2016). Comparisons 274 
of Fill, IRA, and A* conditioning techniques were included in this analysis for their common 275 
application and dependence solely on elevation data.  276 

Fill is perhaps the most commonly used and widely implemented conditioning technique. 277 
However, it has been suggested that it is incompatible with LiDAR data due to the inherent 278 
assumption that depressions are erroneous data points, rather than reflective of true surface features 279 
(Rieger, 1998; Woodrow et al., 2016). Fill removes depressions by adjusting the elevation of a 280 
depression pixel to match the elevation of the surrounding pixels (Jenson & Domingue, 1988; 281 
Planchon & Darboux, 2002; Wang & Liu, 2007). Fill was executed in the wetland model using 282 
TauDEM (Tarboton & Ames, 2001; Tesfa et al., 2011), which allowed for parallelization of the 283 
computations.  284 

Although Fill has been used to preprocess LiDAR DEMs within hydrologic workflows 285 
(e.g., Hooshyar et al., 2016; O’Neil et al., 2018; Richardson et al., 2009), more advanced 286 
techniques have become popular, such as the IRA method. Depending on which method has the 287 
least impact on the DEM, IRA addresses depressions by either filling or breaching, which lowers 288 
pixels adjacent to depression pixels to carve channels out of sinks and through obstacles (Lindsay 289 
& Creed, 2005). The IRA approach was implemented using the GRASS GIS r.hydrodem module 290 
(GRASS Development Team, 2017; Lindsay & Creed, 2005).  291 

The A* least-cost path algorithm (Hart et al., 1968) offers an alternative to modifying 292 
elevation data by determining the least-cost drainage paths through unaltered terrain and out of 293 
sinks (Metz et al., 2011). A* handles pixels draining to depressions by routing flow along the 294 
steepest downhill slope to the bottom of the depression and then continuing along the least steep 295 
uphill slope (Metz et al., 2011). The A* conditioning method was executed using the GRASS GIS 296 
r.watershed module (GRASS Development Team, 2017; Metz et al., 2011).  297 
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3.3. Input variable calculation 298 

Previous development and implementation of the wetland identification model, which 299 
included the study areas used here, concluded that curvature, TWI and DTW are useful topographic 300 
metrics for RF wetland identification (O’Neil et al., 2018). It is important to note that in this 301 
workflow, the DTW and curvature grids were affected only by the smoothing operation, whereas 302 
TWI grids were affected by both the smoothing and conditioning operations. While it would have 303 
been possible to derive all input variables from DEMs subject to both operations, we strived to 304 
alter the LiDAR surface as little as possible. Following the calculation of the curvature, TWI, and 305 
DTW grids, the input variables were merged into a multiband grid, where each band stores data 306 
for a single input variable, using the GDAL gdal_merge.py module (GDAL Development Team, 307 
2018).   308 

Curvature can be used to describe the degree of convergence and acceleration of flow 309 
(Moore et al., 1991), making it a useful indicator of saturated and channelized areas (Ågren et al., 310 
2014; Hogg & Todd, 2007; Kloiber et al., 2015; Millard & Richardson, 2015; O’Neil et al., 2018; 311 
Sangireddy et al., 2016). We use laplacian curvature, defined as the second derivative of the 312 
elevation grid. Laplacian curvature has been shown to assign a higher value of positive curvature 313 
to more convergent features, leading it to favor extraction of natural channels rather than artificial 314 
drainage paths (Passalacqua et al., 2012). In addition, Passalacqua et al. (2012) found that 315 
compared to geometric curvature, laplacian curvature more effectively identified channels in flat 316 
and human-impacted landscapes, which can describe our study sites that all encompass corridor 317 
projects. In the wetland model, curvature was calculated from the smoothed DEM using code 318 
adopted from PyGeoNet, which utilizes NumPy operations (Oliphant, 2006).   319 

TWI has been successfully used to map saturated areas (Ågren et al., 2014; Lang et al., 320 

2013; Millard & Richardson, 2015; Murphy et al., 2009; O’Neil et al., 2018). Developed by Beven 321 

and Kirkby (1979), TWI relates the tendency of an area to receive water to its tendency to drain 322 

water, defined as 323 

𝑇𝑊𝐼 ൌ lnሺ ఈ

୲ୟ୬ఉ
ሻ,  (5) 

where α is the specific catchment area (contributing area per unit contour length) and tan(β) is the 324 

local slope. The TWI was calculated two ways depending on the conditioning method used. For 325 

DEMs conditioned by Fill or IRA, TauDEM D-Infinity methods were used (Tarboton, 1997), with 326 

the slope parameter calculated using NumPy. Alternatively, for DEMs conditioned using A*, a 327 

TWI grid was output directly from the same r.watershed program of GRASS GIS. This method 328 

used the multiple flow direction algorithm (Holmgren, 1994) and a GRASS GIS-calculated slope.  329 

The DTW has been shown to accurately indicate saturated areas as well (e.g., Murphy et 330 

al., 2007, 2009, 2011; O’Neil et al., 2018; Oltean et al., 2016; White et al., 2012). The DTW, 331 

developed by Murphy et al. (2007), is a soil moisture index based on the assumption that soils 332 

closer to surface water, in terms of distance and elevation, are more likely to be saturated. When 333 

calculated for a grid, the DTW is defined as 334 

𝐷𝑇𝑊 ሺ𝑚ሻ ൌ  ቂ∑ ቀௗ௭೔
ௗ௫೔
ቁ 𝑎ቃ ∗ 𝑥௣,  (6) 

where 
ௗ௭

ௗ௫
 is the downward slope of pixel 𝑖, calculated along the least-cost (i.e., slope) path to the 335 

nearest surface water pixel, 𝑎 is either 1 or √2 depending on parallel or diagonal paths across pixel 336 

boundaries, and 𝑥௣ is the pixel resolution (Murphy et al., 2007). DTW calculation requires a slope 337 

grid to represent cost and a surface water grid to represent the source from which to calculate 338 
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distance. Although national-scale streamline data, the National Hydrography Dataset (NHD), 339 

exists for the study sites, these data are generated at relatively coarser resolutions (1:12,000-340 

1:24,000 scales) (USGS, 2013). Instead, the surface water grid was generated using PyGeoNet 341 

(Version 2.0; Sangireddy et al., 2016). PyGeoNet employs a statistical analysis of curvature, and 342 

geodesic minimization principles to extract channel networks from elevation data (Passalacqua et 343 

al., 2010a; Sangireddy et al., 2016). Visual analyses based on aerial imagery were performed to 344 

compare the accuracy of PyGeoNet streams, NHD streams, and streams generated using the flow 345 

initiation threshold method (Band, 1986; O’Callaghan & Mark, 1984; Tarboton, 1991). These 346 

analyses showed that PyGeoNet channels aligned with aerial imagery better than NHD streams 347 

and resulted in less overestimation of streams in developed areas compared to implementing the 348 

flow initiation threshold method with several accumulation area thresholds. We found that using 349 

parameters suggested for engineered landscapes (see Sangireddy et al., 2016) produced accurate 350 

results across all study sites. The DTW grid was created using the GRASS GIS r.cost module 351 

(GRASS Development Team, 2017). 352 

3.4. Classification and accuracy assessment 353 

The classification and accuracy assessment workflow involved splitting the verification 354 
dataset into training and testing subsets, initializing a RF model, training the model, performing 355 
the classification, and then an accuracy assessment. As shown in Table 1, the verification 356 
distributions of wetland and nonwetland area in the study sites can be considered slightly 357 
imbalanced (Site 4) or highly imbalanced (sites 1, 2, and 3). Imbalanced datasets can be 358 
problematic for RF models, because these models aim to minimize the overall error rate, resulting 359 
in more predictions of the majority (i.e., nonwetland) class and fewer predictions of the minority 360 
(i.e., wetland) class (Branco et al., 2016; Chen et al., 2004; Zhu & Pierskalla, 2016). Addressing 361 
this issue is nontrivial and we tested two proposed methods to improve minority class detection 362 
prior to generating final results: undersampling the majority class when creating training data and 363 
increasing the minority class weight. The Scikit-learn Python library (Pedregosa et al., 2011) was 364 
used to execute this workflow segment. 365 

3.4.1. Training and testing data creation 366 

Creating greater balance between training classes has been shown to be an effective 367 
solution for imbalance-related prediction issues (Batuwita & Palade, 2010; Branco et al., 2016; 368 
Estabrooks et al., 2004; Fernández et al., 2008, 2010). The effect of training data characteristics 369 
has been explored for wetland classification applications by Millard and Richardson (2015), who 370 
found that wetland models performed best when training class proportions reflected the true land 371 
cover proportions. To test the effect of this method on model accuracy, all preprocessing 372 
combinations were classified using the training sampling scheme suggested by Millard and 373 
Richardson (2015). Of these results, the model achieving the highest accuracy was used to perform 374 
classification tests where the nonwetland training data size was reduced by varying extents. Final 375 
results for all other preprocessing combinations were then obtained by applying the training class 376 
proportions that resulted in the highest accuracies. For each analysis, the subset of verification data 377 
remaining after training data separation became the testing dataset used for accuracy assessment. 378 
To conduct this testing, a Python module using Numpy array masking methods and random indices 379 
selection was written, which allowed user-defined fractions of verification wetland and 380 
nonwetland pixels to be selected for training.   381 
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3.4.2. RF Classifier 382 

For each model iteration, a RF model was initialized given a set of user-defined parameters, 383 
including class weights. The weighted RF method has been proposed to combat imbalance issues, 384 
as this method entails assigning custom weights to classes that modify the penalty for 385 
misidentifying that class (Chen et al., 2004; Zhu & Pierskalla, 2016). Zhu and Pierskalla (2016) 386 
used class weights to avoid favoring majority class predictions for their imbalanced RF 387 
classification of karst sinkholes. They found that the best results were produced by weighing the 388 
positive, minority class four times higher than the negative, majority class. We tested the efficacy 389 
of applying these class weights, as well as a series of more severely deviating weights, for tuning 390 
the RF model for the imbalanced datasets. For these analyses, training class proportions were held 391 
constant at 15% of verification wetlands and 15% of verification nonwetlands sampled for training. 392 
Other RF model parameters included the number of trees and maximum tree depth. We used 300 393 
trees for all models, as suggested by Zhu and Pierskalla (2016), who found that this number was 394 
sufficient to stabilize errors. The maximum tree depth was set to “None,” which expands nodes 395 
until all leaves are pure (Scikit-learn Developers, 2017a). Additionally, a fixed random state was 396 
used to obtain a deterministic behavior during training across all model runs. All other parameters 397 
were left at their default setting.  398 

After initializing the RF model, the training dataset and corresponding merged input 399 
variable pixels were used to build the forest of trees. This trained model was subsequently used to 400 
classify the remaining input variable pixels, resulting in binary wetland/nonwetland predictions, 401 
i.e., the hard classification. The trained model was also used to output the probabilities of each 402 
pixel belonging to the wetland class. While pixels with probabilities greater than 50% for either 403 
class correspond to the hard classification output, this continuous range of class probabilities can 404 
provide valuable information about model performance and allow users to vary the decision 405 
threshold for classifications based on the intended application and the user-defined balance 406 
between detection and overprediction. The RF classification also output variable importance 407 
measures, defined as the mean decrease in accuracy resulting from the omission of variables. The 408 
hard classification, wetland class probabilities, and importance measures were used for model 409 
analysis and accuracy assessment. The Scikit-learn ensemble.RandomForestClassifier module 410 
(Scikit-learn Developers, 2017b) was used for the RF classification. 411 

3.4.3. Accuracy assessment 412 

Accuracy metrics were selected considering that true positive (i.e., wetland) predictions 413 
should be rewarded more heavily than true negative (i.e., nonwetland) predictions for the intended 414 
environmental planning and permitting application, and the varying degrees of class imbalance 415 
among the study sites. Model performance was evaluated using confusion matrices, wetland recall 416 
and wetland precision (referred to as recall and precision), precision recall (PR) curves, and 417 
receiver operating characteristic (ROC) curves. The sklearn.metrics module was used to calculate 418 
these accuracy metrics (Scikit-learn Developers, 2017b). 419 

Recall and precision are common metrics used to compare model performance between 420 
sites. Recall, also known as the true positive rate, represents the proportion of true wetlands that 421 
were identified and is defined as 422 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ ்௥௨௘ ௪௘௧௟௔௡ௗ ௣௥௘ௗ௜௖௧௜௢௡௦

்௢௧௔௟ ௧௥௨௘ ௪௘௧௟௔௡ௗ௦
.  (7) 

Considering the emphasis on the minority wetland class, recall can be considered the priority 423 
indicator of model performance, a practice supported by statistical literature on imbalanced class 424 



Confidential manuscript submitted to Water Resources Research 

 

evaluation (Branco et al., 2016; Chen et al., 2004; Sun et al., 2007). To account for model 425 
overprediction, we chose precision because, unlike the commonly used specificity (or, true 426 
negative rate), it is not biased by large numbers of true negative instances. For this reason, 427 
precision is considered more representative for imbalanced scenarios (Branco et al., 2016; Sun et 428 
al., 2007). Precision represents the proportion of correct wetland predictions and is defined as  429 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௥௨௘ ௪௘௧௟௔௡ௗ ௣௥௘ௗ௜௖௧௜௢௡௦

்௢௧௔௟ ௪௘௧௟௔௡ௗ ௣௥௘ௗ௜௖௧௜௢௡௦
.  (8) 

Precision can account for model overprediction because, unlike the commonly used specificity (or, 430 
true negative rate), it is not biased by large numbers of true negative instances. For this reason, 431 
precision is considered more representative for imbalanced scenarios (Branco et al., 2016; Sun et 432 
al., 2007).  433 

PR curves and ROC curves were used to summarize model performance and improvement 434 
within individual sites. In cases like Site 4, where there is less class imbalance, false positive rate 435 
is an adequate metric to account for model overprediction (Branco et al., 2016). For this reason, 436 
the ROC curve was used here, which plots recall versus false positive rate for each predictive 437 
threshold of a class. The area under the ROC curve (AUROC) was used to summarize Site 4 438 
models. The baseline of AUROC values is 0.5, representing a random classifier; the closer 439 
AUROC values are to 1, the better a model is at distinguishing between two classes (Branco et al., 440 
2016). For the highly imbalanced sites 1, 2, and 3, PR curves were used instead. PR curves and 441 
the area under PR curves are commonly used to summarize the performance of models where the 442 
positive class is the minority class (Davis & Goadrich, 2006; Keilwagen et al., 2014). PR curves 443 
plot precision versus recall for each predictive threshold of a class. The baseline of a PR curve is 444 
represented by the horizontal line equal to the true percentage of positive classes, and an area under 445 
a PR curve closer to 1 indicates a better performing model. However, the standard area under curve 446 
calculation has been shown to provide overly-optimistic measures from PR curves (Davis & 447 
Goadrich, 2006). Instead, we use the Average Precision (AP) score, which is strongly correlated 448 
to the area under PR curves (Aslam et al., 2005). AP is defined as  449 

𝐴𝑃 ൌ  ∑ ሺ𝑅௡ െ 𝑅௡ିଵሻ𝑃௡௡ ,  (9) 
where 𝑃௡ and 𝑅௡ are the precision and recall at the nth threshold.  450 
 We found these metrics to be more suitable for this study than commonly used options, 451 
such as overall accuracy, Kappa statistic, and Matthews Correlation Coefficient (MCC). When 452 
using overall accuracy, the impact of the rare class is lower than that of the majority class (Branco 453 
et al., 2016; Chen et al., 2004), allowing a wetland model predicting all nonwetland instances to 454 
appear very accurate. The Kappa statistic is highly dependent on sample size, and can increase as 455 
the proportion of wetlands to non-wetlands increases, even if recall decreases (Ali et al., 2014; 456 
Byrt et al., 1993). Overall accuracy and the Kappa statistic have been omitted from similar studies 457 
for these reasons (e.g., Ali et al., 2014; Zhu & Pierskalla, 2016). Lastly, the MCC metric has been 458 
shown to be suitable for imbalanced scenarios (e.g., Boughorbel et al., 2017), however its 459 
calculation includes number of true negative samples. Testing the MCC result for three trials of 460 
sites 1, 2 and 3 that achieved the same recall and precision, we found that MCC scores varied 461 
likely due to differences in wetland to nonwetland ratios.  462 

4. Results 463 

4.1. Effects of preprocessing techniques on model accuracy 464 

Figure 3 shows the precision and recall for each combination of smoothing and 465 
conditioning (15 trials for each study site). Note that for these results, the same smoothing 466 



Confidential manuscript submitted to Water Resources Research 

 

parameters were applied for all inputs. There was a large difference in accuracy between model 467 
results in sites 1, 2, and 3 compared to those in Site 4. In sites 1, 2, and 3, the majority of testing 468 
wetlands were identified, represented by high recall, but a minority of the wetland predictions were 469 
correct, represented by low precision. Even though these models were prone to overprediction, 470 
which is a less costly error than underprediction for wetland permitting, their high rate of wetland 471 
detection would make them useful as preliminary tools for subsequent manual investigation. In 472 
contrast, model results for Site 4 had a relatively higher precision and lower recall, reflecting fewer 473 
wetland predictions, which were also mostly incorrect. Furthermore, there were no significant 474 
improvements Site 4 when increasing the proportion of verification data used for training, further 475 
suggesting the topographic metrics and the applied preprocessing methods cannot sufficiently 476 
distinguish wetlands in this landscape.      477 

  478 
Figure 3. Wetland precision and recall resulting from each preprocessing technique combination across all study sites. 479 
Note the differences in x-scale and y-scale range. 480 
 481 

Common trends in model performance due to smoothing and conditioning emerged despite 482 
differences in the accuracies. As seen in Figure 3, results were more consistently grouped by 483 
smoothing method than conditioning method for all sites, indicating that smoothing had a more 484 
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significant impact on the wetland model. The highest precision and recall scores were achieved by 485 
the Perona-Malik and A* combination for all sites. No filtering and Fill resulted in the lowest 486 
precision and recall scores for all sites, except Site 1, where no filtering and A* resulted in the 487 
lowest scores. For sites 1, 3, and 4 the DTW was the most important variable in the best performing 488 
models. For Site 2, the most important variable was the DTW in the worst performing model and 489 
the TWI in the best performing model. The changes in variable importance due to preprocessing 490 
technique combinations are depicted in Figure S1. 491 

For sites 1, 2 and 3, all models using no filter produced the overall lowest precision and 492 
recall scores, and in Site 4 these models resulted in the lowest precision and among the lowest 493 
recall (Figure 3). Visual analyses showed that models resulting from unsmoothed DEMs had the 494 
largest distribution of scattered false wetland predictions, many of which were located in 495 
impervious areas. Conversely, models incorporating the Perona-Malik filter achieved the highest 496 
precision and recall scores in all study sites. The Perona-Malik smoothing resulted in considerable 497 
removal of scattered wetland predictions and false positives surrounding developed areas. Perona-498 
Malik smoothing also best represented natural drainage patterns, as demonstrated by increased 499 
wetland predictions within true wetland extents. Other smoothing methods resulted in somewhat 500 
similar performance in terms of recall and precision with the exception of Site 2, for which there 501 
was a clear difference between the filtering techniques (Figure 3). Mean, median, and Gaussian 502 
smoothing consistently reduced scattered false wetland pixels and better represented wetlands in 503 
natural areas, relative to unsmoothed models. However, median smoothing was noticeably less 504 
effective in doing so in vegetated areas. Gaussian and mean smoothing results were typically very 505 
similar in all land types. It was unexpected that Gaussian smoothing did not consistently 506 
outperform the relatively simpler mean and median methods since the Gaussian method guarantees 507 
causality. Additionally, an example of the effect of smoothing methods on curvature derivation for 508 
a wetland transect can be seen in Figure S2.  509 

Models incorporating the A* technique and those using Fill consistently resulted in the 510 
highest and lowest accuracies within groups of common smoothing, respectively (Figure 3). Visual 511 
analyses showed that in developed areas, Fill created larger areal false wetlands along roads 512 
whereas IRA and A* methods resulted in smaller false positives in more linear patterns. In 513 
vegetated areas, Fill conditioning resulted in the largest distribution of scattered false wetlands 514 
within local depressions and A* conditioning the smallest. Moreover, flow routing for DEMs 515 
conditioned by the IRA method required 5+ hours when running on 20 cores on high performance 516 
computing resources, whereas this step for filled DEMs required less than one hour using the same 517 
resources. This substantial increase in computational cost did not correspond to notable differences 518 
in prediction accuracy (Figure 3). In contrast, generating the A* outputs required less than one 519 
hour on a desktop computer with no parallelization. Lastly, it is important to note that improved 520 
implementations of the traditional Fill algorithm have been recently proposed (e.g., Barnes et al., 521 
2014), and this may perform better than the traditional method examined here. An example of the 522 
effect of conditioning on TWI calculation for a wetland transect is also provided in Figure S3. 523 

4.2. Characteristics of the tuned RF model 524 

Undersampling the majority class for training data selection improved wetland prediction 525 
accuracy more notably than adjusting the class weights (Figure S4). Increasing the wetland class 526 
weight while maintaining a nonwetland class weight of one resulted in small accuracy changes 527 
and did not consistently lead to improved wetland detection. This was also true when applying 528 
wetland to nonwetland weight ratios of 4:1, as recommended by Zhu and Pierskalla (2016), and 529 
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when setting the wetland class weight as high as 1,000 (trial not shown in S4a). For that reason, 530 
the class weights parameter was set to “balanced,” which automatically adjusted weights to be 531 
inversely proportional to the class distribution (Scikit-learn Developers, 2017a); however, small 532 
changes in model results were observed when compared to equal class weights of one. Conversely, 533 
varying the ratio of training wetlands to training nonwetlands greatly affected precision and recall. 534 
As expected, precision decreased and recall increased as less nonwetlands were sampled for 535 
training, but with varying tradeoffs. Our testing consisted of sampling fewer nonwetlands until the 536 
loss in precision outweighed the gain in recall. Sampling equal percentages from both classes, as 537 
proposed by Millard and Richardson (2015), did not result in levels of recall that are acceptable 538 
for wetland permitting. For the highly imbalanced sites, the best training dataset consisted of 15% 539 
of surveyed wetlands and only 1% of surveyed nonwetlands. The model performance for the 540 
slightly imbalanced Site 4 was very poor when sampling as little as 5% of nonwetlands (trial not 541 
shown in S4b), so it was necessary to test less severe undersampling schemes. Site 4 model results 542 
still improved due to less severe majority class undersampling, with the best performing training 543 
set consisting of 15% of surveyed wetlands and 8% of surveyed nonwetlands. Furthermore, we 544 
tested the effect of increasing the overall training data quantity while maintaining best performing 545 
sampling ratios, and found that there were no notable benefits to model performance. 546 

5. Discussion 547 

5.1. Varying the smoothing scale and method by input variable 548 

Results showed that smoothing had a larger impact on model performance than 549 
conditioning for all sites. This is likely due, in part, to the fact that DEM smoothing was included 550 
in the calculation of all input variables whereas DEM conditioning was only required for the TWI 551 
calculation. In addition to this, smoothing has been shown to impact the scale of hydrologic 552 
patterns captured, as modeled soil moisture distributions and groundwater table gradients depend 553 
on the level of detail of topographic variations (Burt & Butcher, 1986; Rodhe & Seibert, 1999; 554 
Seibert et al., 1997; Sørensen et al., 2006; Zinko et al., 2005), and both smoothing method and 555 
scale are important. While the smoothing method determines the distinction between features of 556 
interest and noisy data, the smoothing scale determines the scale of these features. By extension, 557 
the best smoothing scale and method may vary by input variable as they each capture unique 558 
hydrologic characteristics. To further explore the effect of smoothing on wetland identification, 559 
we performed additional analyses where input variables were derived from DEMs with a range of 560 
smoothing methods and scales applied. Classifications were executed for each input variable 561 
derived from the individualized smoothing schemes (“single input models”). Input variables used 562 
in the best performing single input models were merged into a three-band grid and classified 563 
(“wetland model”), following our proposed approach. For mean, median, and Gaussian smoothing, 564 
we tested 2m, 10m, 25m, 50m, and 100m smoothing scales, as done in studies evaluating TWI and 565 
DTW for wet soil mapping (Ågren et al., 2014; Murphy et al., 2011). For the Perona-Malik method, 566 
20 and 100 iterations were tested, similar to analyses performed by Passalacqua et al. (2010b) for 567 
channel extraction. Single input models were compared first by precision and recall and then by 568 
AP score (sites 1, 2, and 3) or AUROC score (Site 4) if needed (Figure 4). A* conditioning was 569 
applied to all TWI models. 570 
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 571 
Figure 4. Effect of varying smoothing method and scale on wetland model accuracy. Scatter plots show the results for 572 
models trained on a single input, and annotations indicate the best performing smoothing formulation for that input. 573 
Bar plots show the results of wetland models (i.e., trained on three inputs) when applying the individualized smoothing 574 
formulation vs. the smoothing formulation generalized across all inputs. Note the differences in x-scale and y-scale 575 
range. 576 
aGaussian 100m, Gaussian 50m, and Mean 100m were considered in determining the best performing curvature 577 
formulation for Site 4. 578 
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For all sites, varying the smoothing scale and method affected the accuracy of input 579 
variables and applying the best performing individualized smoothing scheme improved the 580 
wetland model performance. While we can gain insight from the trends depicted in Figure 4, it is 581 
important to note that relatively small accuracy margins separated results in many cases, and 582 
determination of the best performing models was based on differences of AP scores as low as 583 
0.002 and AUROC score as low as 0.02. It would be useful to expand the testing performed here 584 
with additional study sites and repeated trials to more clearly establish best performing smoothing 585 
formulations for each input variable by landscape. 586 
 The best performing TWI smoothing method varied across sites, but coarser smoothing 587 
scales generally performed better than finer-scale models, with the exception of Site 3. According 588 
to the literature, this is likely because the TWI is effective in modeling saturation correlated to 589 
groundwater table gradients, which are better described by macrotopographic patterns (Ågren et 590 
al., 2014; Grabs et al., 2009; Murphy et al., 2009, 2011; Sørensen & Seibert, 2007). However, the 591 
fluvial landscape in Site 3 required finer-scale indications of flow accumulation and convergence 592 
to capture riverine wetlands and riparian corridors. TWI models for Site 4 that incorporated 593 
Perona-Malik smoothing resulted in the lowest accuracies regardless of the number of iterations 594 
(i.e., rate of smoothing) used. This suggests that in the very flat study site, wetlands are 595 
characterized by gradually sloping and diffuse boundaries rather than sharper ones that would be 596 
estimated by the Perona-Malik method.  597 

Similar to TWI, curvature models typically improved as scales became coarser. In addition, 598 
for all sites the best performing smoothing formulation was Gaussian at a 100m scale. In 599 
determining the best performing curvature model in Site 4, we considered Gaussian 50m and mean 600 
100m, which resulted in the highest recall, and Gaussian 100m, which resulted in the highest 601 
precision. Because none of these formulations resulted in both the highest precision and recall, and 602 
because precision in Site 4 can be considered more important relative to other sites due to greater 603 
class balance, Gaussian 100m was chosen as it resulted in the highest AUROC score. The high 604 
accuracies for curvature models using Gaussian 100m shows that curvature was consistently more 605 
successful in identifying wetland depressions when coarser smoothing allowed smaller 606 
depressions such as roadsides and culverts to be degraded. It is also possible that larger Gaussian 607 
kernels would have further improved models in some of the sites. Curvature also became the most 608 
important variable in sites 3 and 4, rather than the DTW. Rank of the most important variables did 609 
not change in sites 1 and 2. 610 

DTW models in sites 1, 2 and 3 followed an opposite trend in which accuracy generally 611 
increased as smoothing scale became finer. This is likely because the DTW has been found to be 612 
scale invariant and therefore use detailed topographic information to capture riparian wetted areas 613 
(Ågren et al., 2014; Murphy et al., 2009, 2011). In Site 4, finer-scale smoothing applied to the 614 
DTW tended to result in lower accuracy than coarser scales. This may reflect the higher 615 
distribution of large depression wetlands in the area, which are better represented by gradual slope 616 
gradients rather than those modeled by microtopography. DTW models filtered by the Perona-617 
Malik with 50 iterations (i.e., the best performing generalized smoothing scheme) resulted in high 618 
accuracy for all sites. This indicates that this Perona Malik formulation is effective for DTW 619 
calculations for a range of landscapes, and that changes to DTW smoothing schemes had little 620 
effect on complete wetland model improvements.    621 
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5.2. Improvements to wetland predictions due to preprocessing schemes 622 

5.2.1. Applying the best performing generalized scheme 623 

Between the worst and best performing generalized preprocessing schemes, as described 624 
in Section 4.1, AP scores (sites 1-3) and the AUROC score (Site 4) increased by 0.16 in Site 1, 625 
0.18 in Site 2, 0.07 in Site 3, and 0.09 in Site 4 (see Figure 5 curves). The improvements from the 626 
worst performing models (Figure 5, a1-a4) are likely due to the ability of the Perona-Malik filter 627 
to enhance feature edges, allowing for more distinct transitions between converging and diverging 628 
areas. This feature resulted in higher wetland probabilities within surveyed wetland boundaries 629 
and abrupt transitions between high and low probability areas (Figure 5, b1-b4). For Site 2 there 630 
was a drastic decrease in wetland likelihood within impervious areas compared to the worst 631 
performing model (Figure 5, b2 vs. a2). No filter and A* conditioning did not result in a similar 632 
model output for Site 2, showing that the reduction of convergent areas detected on roadways was 633 
a product of the Perona-Malik filtering. Improvements between the best and worst generalized 634 
preprocessing methods were relatively subtle in Site 4 (Figure 5, b4 vs. a4). Despite slightly more 635 
accurate wetland predictions, the persistent random dispersion of probabilities point to an inability 636 
to identify wetlands among the mild slopes and complex subsurface of Site 4 when preprocessed 637 
using a generalized Perona-Malik smoothing and A* conditioning.  638 

5.2.2. Applying an individualized scheme 639 

Across all sites, the wetland model further improved as a result of individualizing the 640 
smoothing technique and scale to each input variable. Performance curves given in Figure 5 show 641 
that the AP scores increased in sites 1-3 (+0.13, +0.11, and +0.11, respectively) and the AUROC 642 
score increased in Site 4 (+0.18) relative to the best performing generalized models (Figure 5, b1-643 
b4). Individualized smoothing in Site 1 and Site 3 resulted in fewer instances of hydrologic paths 644 
surrounding true wetland boundaries contributing to overprediction (Figure 5, c1 and c3). In Site 645 
1, this is likely due to deriving the TWI grid from coarser median smoothing (50m scale), which 646 
degraded smaller slope variations and removed salt-and-pepper noise. In Site 3, deriving the 647 
curvature grid from coarser Gaussian smoothing (100m) likely highlighted wider and general 648 
channelized areas that more robustly encompassed true wetlands. In Site 2, individualized 649 
smoothing improved the model by eliminating flow accumulation in developed areas (Figure 5, c2 650 
vs. b2). The coarser curvature (Gaussian 100m) likely contributed to filtering out narrow, 651 
convergent zones surrounding roadways and thereby decreasing overprediction. Applying 652 
individualized smoothing resulted in the greatest accuracy improvement in Site 4 despite the more 653 
complex subsurface of the area. TWI and DTW contributions to the improvements in Site 4 can 654 
be summarized as generalized slope patterns modeled by coarse, Gaussian smoothing that better 655 
represented hydraulic gradients that contribute to wetland formation (Figure 5, c4 vs. b4). It is 656 
clear that the most significant contributions to the complete wetland model resulted from the 657 
individualized curvature smoothing formulation. The improved wetland detection due to the 658 
curvature grid suggests the wetlands in the study site are well represented by large, isolated 659 
intrusions into the groundwater table. Overall, the consistent improvements to the wetland models 660 
due to individualizing smoothing suggest it would be useful to expand the testing performed here 661 
with additional study sites and trials to more clearly establish best performing smoothing 662 
formulations for each input variable by landscape. Additional scenes from these improved wetland 663 
models are provided in figures S5-S8 and corresponding confusion matrices are given in tables 664 
S1-S4. 665 
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 666 
Figure 5. Wetland likelihoods resulting from different preprocessing configurations: worst generalized preprocessing, 667 
as described in Section 4.1 (a), best performing generalized preprocessing, as described in section 4.1 (b), and A* 668 
conditioning and best performing individualized smoothing, as described in section 5.1 (c). PR curves and ROC curve 669 
are shown to the right, with the accuracy for the hard classifications starred. Note the differences in results extents 670 
between panels are due to edge degradation caused by coarser smoothing scales.  671 

5.3.Comparison to earlier wetland model implementations 672 

As mentioned, the sites were previously studied using an earlier version of the wetland 673 
identification model (see O’Neil et al., 2018). The earlier model included Soil Survey Geographic 674 
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Database (SSURGO) soil data (Soil Survey Staff, 2017) in addition to TWI, curvature, and DTW. 675 
Soil data were omitted from this analysis to isolate the effects of DEM smoothing and conditioning 676 
techniques on the model accuracy. However, soil data were reintroduced where available to 677 
provide a comparison to the earlier wetland model where the input data per site are the same while 678 
the processing techniques and classification parameters differ. Following the procedure of O’Neil 679 
et al. (2018), input datasets were created that included relevant SSURGO layers and topographic 680 
input variables with best performing individualized preprocessing applied. For Site 1, 681 
incorporating soil data resulted in 38% precision and 96% recall, which were improvements from 682 
22% precision and 92% recall using the earlier wetland model. For Site 2, the addition of soil data 683 
resulted in precision and recall scores of 34% and 92%, respectively. Compared to the earlier 684 
approach, this represents an improvement from 15% precision and a small decrease from 93% 685 
recall. For Site 3, where soil information was insufficient and therefore omitted in both wetland 686 
model versions, precision increased from 11% to 28% and recall increased from 87% to 91%. This 687 
comparison was not extended to Site 4 due to lack of overlap between verification data limits. The 688 
improvements in accuracy from the earlier model show that applying the more sophisticated terrain 689 
processing techniques resulted in higher quality wetland predictions that eliminated erroneous 690 
predictions while identifying more of the true wetlands, or only slightly fewer. In addition, model 691 
improvements in sites 1 and 2 show the ability of the polygonal, categorical soil information to 692 
describe soil characteristics relevant to wetland formation that are not captured by surface 693 
topographic patterns.  694 

5.4. Approach limitations 695 

With the exception of Site 4, the wetland identification tool produced high wetland 696 
accuracy but relatively low precision (22-28%) when using only LiDAR-derived input variables. 697 
This low precision paired with high recall demonstrates the model configuration to identify 698 
convergent areas that are likely to become saturated, which will include wetlands as well as other 699 
areas with these characteristics. Although some of the overprediction occurred in concave, 700 
impervious areas, other predictions with consistently high wetland probabilities occurred in 701 
vegetated areas that surround surveyed wetlands, according to recent aerial imagery. It is possible 702 
that these overpredictions represent the diffuse boundaries of seasonally saturated areas while the 703 
surveyed wetlands, which were all delineated in summer months, were limited to areas saturated 704 
during most of the year. Topographic metrics are considered to be seasonally-averaged indicators 705 
of soil saturation, thus it is not surprising that models using these indices alone overpredicted 706 
wetlands according to surveys conducted during summer months. In addition, overpredictions 707 
surrounding developed structures or representing roadside ditches may be due to a lack of built 708 
drainage network representation. The current flow routing implementation does not anticipate 709 
drainage through artificial structures. Including these flow paths by artificially lowering the DEM 710 
along built drainage paths and outlets would more realistically represent water accumulation in 711 
developed areas, thus reducing overprediction.  712 

A shortcoming of the model common to all study sites was scattered, isolated wetland 713 
predictions, which is expected from a pixel-based classification. Pixel-based classifications do not 714 
take increased wetland probability into account for adjacent similar classifications. Thus, the RF 715 
classification ignores that wetlands exist as distinct landscape units bound by geomorphic features. 716 
Although we found that including object-based soil data begins to address this issue, alternative 717 
techniques may allow the model to still rely solely on DEM data. For example, incorporating 718 
object-based image analysis (OBIA), where pixels are segmented into similar landscape groups 719 
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prior to classification, may be useful. Many studies have demonstrated the ability of OBIA to 720 
address data heterogeneity and noise in wetland classifications (Dronova, 2015), and researchers 721 
have shown the benefits of applying OBIA specifically to DEM data (e.g., Kloiber et al., 2015; 722 
Richardson et al., 2009; Serran & Creed, 2016). Using deep learning networks, rather than RF, 723 
may also address this issue. Deep learning networks identify objects based on contextual spatial 724 
patterns and, although an emerging field (Zhang et al., 2016), they show promise for improving 725 
wetland identification from various remote sensing data (Liu et al., 2018; Ma et al., 2017; Rezaee 726 
et al., 2018). 727 

While it is valuable to test the technical limits of LiDAR topography for its wide 728 
availability and high resolution, wetland predictions could be improved by incorporating 729 
additional remote sensing data. Multispectral data have been shown to be useful for determining 730 
vegetation extent optically and radar data have been used to identify water extent and flooded 731 
vegetation without being hindered by cloud cover (Guo et al., 2017). Researchers have 732 
demonstrated the ability of these data to identify wetlands in geographic regions where topographic 733 
information is less effective due to mild topographic variations and glacial or coastal influence 734 
(e.g., Allen et al., 2013; Behnamian et al., 2017; Corcoran et al., 2013; Kloiber et al., 2015; Millard 735 
& Richardson, 2013). Thus, a more robust set of wetland characteristics may be detected by 736 
including multispectral imagery and radar data to supplement the LiDAR topography used in this 737 
analysis. When these data become widely available at adequate resolutions, it would be valuable 738 
to incorporate them into our proposed framework to improve predictions while maintaining 739 
accessibility for environmental planning decision makers.  740 

6. Conclusions 741 

Accurate and widely-available wetland inventories are an important resource to aid wetland 742 
conservation and environmental planning. We outline an automated, open source wetland 743 
identification model that uses LiDAR DEM-derived topographic wetness index (TWI), curvature, 744 
and cartographic depth-to-water index (DTW) as input variables to a Random Forest (RF) model. 745 
The use of high-resolution DEMs allows for more detailed mapping of topographic features, but 746 
also requires more sophisticated smoothing and conditioning techniques. We tested the effects of 747 
smoothing (none, mean, median, Gaussian, and Perona-Malik) and conditioning (Fill, Impact 748 
Reduction Approach (IRA), and A* least-cost path analysis) techniques on our wetland model 749 
results for four sites in Virginia that encompass a range of topography, built environment, and 750 
ecoregions.  751 

We conclude the following from our results. 752 
1. For all sites, Perona-Malik smoothing followed by A* conditioning resulted in the best 753 

performing models, in terms of wetland precision and recall. 754 
2. Applying Perona-Malik smoothing can enhance the input variable calculations in a way 755 

that wetland locations can be modeled. 756 
3. The A* conditioning method can improve the accuracy of the TWI for wetland 757 

identification and decrease calculation runtime compared to Fill and IRA 758 
implementations. 759 

4. The accuracy of wetland predictions improved considerably by individualizing 760 
smoothing method and scale to each input variable, most notably for a very flat site 761 
located in the Coastal plain. 762 

5. Without the data required to perform individualized smoothing testing for a new area, 763 
we recommend applying the generalized Perona-Malik smoothing scheme and A* 764 



Confidential manuscript submitted to Water Resources Research 

 

conditioning as these methods greatly improved wetland identification for a range of 765 
landscapes.  766 

6. Varying the training class distribution more effectively addressed wetland 767 
underprediction due to class imbalance, compared to varying class weights, and 768 
wetland accuracy improved for all sites by undersampling the nonwetland training 769 
class.  770 

Using the individualized smoothing schemes and the best performing A* conditioning, our 771 
models resulted in high recall (81-91%) but lower precision (22-69%), and our proposed 772 
framework improved results compared to earlier wetland model implementations. These best 773 
performing models may not yet be adequate as definitive wetland delineation sources due to the 774 
low precision. However, recall can be considered more important than precision for wetland 775 
screening applications meant to guide subsequent field surveys. Wetland predictions produced by 776 
the current model would lead field surveyors to portions of most, if not all, wetlands, while saving 777 
resources by avoiding nonwetland areas. Thus, the proposed framework has strong potential to act 778 
as a preliminary screening tool based on its high rate of wetland detection.  779 
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Table and figure captions 791 

Table 1. Characteristics of each study site, including dominating land cover, topographic 792 
characteristics, and surveyed wetland distributions. 793 

  Site 1 Site 2 Site 3 Site 4 

Dominating Land Covera 

Turf Grass (35%), 
Developed (22%), 
Cultivated (20%), 
Forested (19%) 

Developed (36%), 
Turf Grass (31%), 

Forested (21%) 

Forested (73%), 
Developed (9%), 
Cultivated (9%) 

Forested (66%), 
Cultivated (18%), 

NWI Wetland 
(9%) 

Verification Area (km2) 2.8 1.6 1.8 5.6 

Min. Elevationb (m) 209 46 101 10 

Max. Elevation (m) 241 107 178 42 

10th Percentile Slopec (m/m) 0.02 0.01 0.04 0.01 

90th Percentile Slopec (m/m) 0.14 0.20 0.26 0.06 

Mean Slopec (m/m) 0.07 0.08 0.14 0.03 

Wetland : Nonwetland (m2/m2) 0.03 0.06 0.02 0.42 

Dominating Cowardin Wetland 
Type(s)d 

Palustrine 
Emergent (50%), 
Streams (20%)e 

Palustrine 
Forested (44%), 

Palustrine 
Emergent (33%) 

Palustrine 
Forested (56%), 
Streams (43%) 

Palustrine 
Forested (88%), 
Palustrine Shrub 

(9%) 
a Source: Virginia Information Technologies Agency (VITA) Land Cover classifications 
(https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/land-cover/). 
b In sites 1, 2, and 4, verification area varied slightly due to edge effects of applying filtering to DEMs. 
c Slope information was calculated from LiDAR DEMs resampled to a 5 m resolution to reduce effect of raw DEM 
noise on slope information. 
d Values are approximate and according to VDOT wetland surveying reports. 
e Wetland type for remaining 30% of wetland area was not reported. 
 794 
Figure 1. Four study areas spanning four level III ecoregions in Virginia, USA (a). Each study area 795 
includes the wetland survey limits, referred to as study sites, and the encompassing HUC 12 796 
watershed, used as the processing extent (b).  797 
Ecoregion data source: US EPA Office of Environmental Information 798 
Aerial imagery data source: NAIP Digital Ortho Photo Image. 799 
 800 
Figure 2. Workflow of the wetland identification model created through this research. Each 801 
combination of preprocessing techniques (bold font) was executed for this analysis. Green shapes 802 
indicate input data, grey shapes indicate processes, yellow shapes indicate intermediate output, 803 
and red shapes indicate final output. 804 
 805 
Figure 3. Wetland precision and recall resulting from each preprocessing technique combination 806 
across all study sites. Note the differences in x-scale and y-scale range. 807 
 808 
Figure 4. Effect of varying smoothing method and scale on wetland model accuracy. Scatter plots 809 
show the results for models trained on a single input, and annotations indicate the best performing 810 
smoothing formulation for that input. Bar plots show the results of wetland models (i.e., trained 811 
on three inputs) when applying the individualized smoothing formulation vs. the smoothing 812 
formulation generalized across all inputs. Note the differences in x-scale and y-scale range. 813 
aGaussian 100m, Gaussian 50m, and Mean 100m were considered in determining the best 814 
performing curvature formulation for Site 4. 815 
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Figure 5. Wetland likelihoods resulting from different preprocessing configurations: worst 816 
generalized preprocessing, as described in Section 4.1 (a), best performing generalized 817 
preprocessing, as described in section 4.1 (b), and A* conditioning and best performing 818 
individualized smoothing, as described in section 5.1 (c). PR curves and ROC curve are shown to 819 
the right, with the accuracy for the hard classifications starred. Note the differences in results 820 
extents between panels are due to edge degradation caused by coarser smoothing scales.  821 
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