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Abstract 

The ability to quickly and accurately forecast flooding is increasingly important as extreme 

weather events become more common. This work focuses on designing a cloud-based real-time 

modeling system for supporting decision makers in assessing flood risk. The system, built using 

Amazon Web Services (AWS), automates access and pre-processing of forecast data, execution of 

a computationally expensive and high-resolution 2D hydrodynamic model, Two-dimensional 

Unsteady Flow (TUFLOW), and map-based visualization of model outputs. A graphical 

processing unit (GPU) version of TUFLOW was used resulting in an 80x execution time speed-up 

compared to the central processing unit (CPU) version. The system is designed to run 

automatically to produce near real-time results and consume minimal computational resources 

until triggered by an extreme weather event. The system is  demonstrated for a case study in the 

coastal plain of Virginia to forecast flooding vulnerability of transportation infrastructure during 

extreme weather events.   
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1. Introduction 

Floods were the number one natural disaster in the US in terms of lives lost and property 

damage incurred during the 20th century (Perry, 2000), with statistics showing that total flood 

insurance claims averaged more than $1.9 billion per year from 2006 to 2015 (NFIP Statistics, 

2016). Rainfall events are predicted to become more frequent and intense due to climate change, 

which is expected to cause increased flooding (Melillo et al., 2014). As society faces flooding 

events with increasing frequency and intensity, flood modeling will become an even more 

important tool for decision makers. Such models can be used to warn municipalities and 

communities of forecasted flooding impacts, and to test alternative flood mitigation strategies for 

addressing flood problems.  

The National Research Council (NRC) has recommended increased use of two dimensional 

(2D) hydrodynamic models for flood risk management purposes (NRC, 2009). There are several 

advantages to using 2D models rather than one dimensional (1D) models, such as better resolution 

of velocity, localized depth and surface water elevation, and determination of floodplain extent 

directly. 2D hydrodynamic models are especially important for cases with complex flows such as 

in low-relief terrains with flat or mild slopes. For these low-relief terrains, 1D models are often 

not sufficient due to the limitations of assumed uniform water velocity and constant water surface 

elevation modeled on each cross section (Garcia et al., 2015).  

Executing 2D hydrodynamic models at the regional scale (~10x103 - 100x103 km2) requires 

parallel computation in order to run in a timeframe reasonable for flood warning applications. 

Graphical processing units (GPUs) have recently been shown to effectively execute parallelized 

2D hydrodynamic models, with observed speed-ups of 20x to 100x (Huxley and Syme, 2016; 

Garcia et al., 2015; Vacondio et al., 2014; Kalyanapu et al., 2011). Vacondio et al. (2014) expect 
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that GPUs will continue to be attractive for 2D numerical models compared to clusters of central 

processing units (CPUs) for several reasons: (i) fast-developing GPU hardware, (ii) quickly 

decreasing costs, and (iii) lower maintenance compared to large CPU clusters. With the speed-ups 

provided by GPUs, regional flood warning systems can now be implemented with 2D 

hydrodynamic models and the spatial resolution needed to provide targeted and detailed 

information to decision makers. 

There are currently several related efforts aimed at improving flood warnings. The National 

Weather Service (NWS) and the United States Geological Survey (USGS) have a joint project to 

generate flood inundation maps at locations where a NWS forecast point and a USGS stream gauge 

exist (Fowler, 2016). At these locations, a flood inundation map is created for multiple possible 

water surface elevations and, by using a rating curve and forecasted discharge,  the data is 

converted into the corresponding water surface elevation. Then the corresponding flood inundation 

map is selected from a precomputed library of flood inundation maps. The Flood Locations and 

Simulated Hydrographs (FLASH) is a system designed by researchers and developers to improve 

the ability of the NWS to forecast flooding at the Weather Forecast Offices (WFOs) (Gourley et 

al., 2017). The FLASH system uses the Multi-Radar Multi-Sensor (MRMS) rainfall data with a 

spatial resolution of 1 km and temporal resolution of up to 2 min, along with a highly efficient 

distributed hydrologic modeling framework, to generate flood forecasts for over 10.8 million grid 

points across the conterminous United States (CONUS). The National Flood Interoperability 

Experiment (NFIE) is a multiagency effort in collaboration with the academic community to 

improve river and flood forecasts (Maidment, 2017). A key component of NFIE is a model called 

Routing Application for Parallel computing of Discharge (RAPID) (http://rapid-hub.org/), which 

was developed to operate on the 2.67 million NHDPlus catchments and use parallel computing to 

http://rapid-hub.org/
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solve the 1D Muskingum flow equations on this large river network (Maidment, 2017; David et 

al., 2013, 2011). NFIE showed it was possible to increase the spatial density of flooding forecast 

locations by more than 700x compared to the present NWS river forecast system (Maidment, 

2017). The RAPID model is expected to be replaced by the Simulation Program for River 

Networks (SPRINT) (Liu and Hodges, 2014), which has the capability of solving the full nonlinear 

Saint-Venant equations for 1D unsteady flow and depth for channel networks, and promises speed-

up of the computation time. However, in some instances a 2D flood model will be necessary to 

accurately model water transport over large flat areas. Delft-FEWS is a hydrological forecasting 

and warning framework that provides a platform through which operational forecasting systems 

can be constructed, allowing for flexibility in the integration of models and data (Werner et al., 

2013). Delft-FEWS does not contain any inherent hydrologic modeling capabilities within its code 

base, instead it relies on the integration of external hydrologic model components.  

The objective of this research is to design and prototype a cloudbased system to support 

decision makers as they assess flood risk to transportation infrastructure during extreme weather 

events. The system automates access and pre-processing of forecast data, execution of a high-

resolution 2D hydrodynamic model, and map-based visualization of model outputs. This work 

advances on prior approaches described earlier by presenting a cloud-based framework for 

modeling regions with complex flows using a 2D hydrodynamic model. Rather than relying on 

precomputed flood maps, flood depths and extents, this approach allows for water flows to be 

modeled in real-time based on current and forecasted conditions. This approach could be adopted 

in existing decision support systems to leverage cloud and GPU resources within this general 

framework.  
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The study advances on previous work funded by the Virginia Department of Transportation 

(VDOT) for the Hampton Roads District of Virginia, which produced the Regional River Severe 

Storm Model (R2S2) (Hassan Water Resources PLC., 2012). The purpose of R2S2 is to help 

Residency Administrators to efficiently allocate scarce resources to road closures and to assist first 

responders with entering and exiting flood prone areas. This research advances R2S2 by automating 

what was previously a manual process of converting forecast rainfall data into model inputs, 

running the model, and visualizing the results. Furthermore, this research addresses computational 

challenges with using R2S2 for real-time flood warning and emergency management applications. 

This research also moves R2S2 to the cloud and is one of the first cloudbased flood warning 

applications with (i) an automated workflow for obtaining the real-time forecast rainfall data, (ii) 

execution of a model to identify flooded bridge and culvert locations in a time duration sufficient 

for warning and emergency management purposes, and (iii) generation of an online map with 

locations of the flooded roadways and bridges, and the ability to send automated warning messages 

via email. This system can provide VDOT with information needed when determining road 

closures, disseminating warning messages for area residents, and making other emergency 

management decisions that affect human safety and property damage. Although the current case 

study application of the system is focused on VDOT as the primary user, the approach could be 

used as a more general flooding decision support system for other stakeholders. 

Cloud computing is gaining attention in environmental applications to satisfy the peak 

performance needs of applications that use large amounts of processing power (Granell et al., 

2016). Sun (2013) used Google Drive, a cloud computing service, to host an environmental 

decision support systems (EDSS) module that is migrated from the traditional client-server-based 

architecture. Google Drive has the capability of providing a number of basic visual analytics 
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features, and the collaboration between the decision makers can be increased while decreasing the 

cost of small scale EDSS. Ercan et al. (2014) used the Windows Azure Cloud environment to run 

a created calibration tool built with the modified calibration method, a parallel version of the 

Dynamically Dimensioned Search (DDS), for calibrating the Soil and Water Assessment Tool 

(SWAT). Using this tool, results showed a significant speed-up of the model calibration for six 

different model scenarios. Wan et al. (2014) introduced a public cloud-based flood 

cyberinfrastructure, CyberFlood. CyberFlood collects, organizes, manages, and visualizes several 

global flood databases for decision makers and public users in real-time. This database is expanded 

by applying a methodology for the data collection in which the public reports new flood events 

using smartphones or web browsers. Hu et al. (2015) implemented a web-based application in the 

Hadoop-based cloud computing environment to make enhanced coupled human and natural 

models publicly available. This allows users to access and execute the model without an increase 

in response time. Kurtz et al. (2017) presented a stochastic cloud-based fully-operational 

architecture for a real-time prediction and management system related to groundwater 

management. This proposed system allows for data assimilation and is coupled with a physically 

based hydrologic model, HydroGeoSphere, in a cloud environment to use the generated prediction 

for groundwater management. The work presented here advances on prior studies by 

demonstrating the ability of using resources in a public cloud, including instances with powerful 

GPUs like those provided by AWS, to build an end-to-end automated cloud-based system for 

regional-scale flood forecasting. This system is able to run a computationally expensive 2D 

hydrodynamic model and is activated automatically during extreme weather events by software 

that is continuously monitoring forecasted rainfall conditions. It is designed to run in a time frame 
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relevant to realtime emergency management applications and automatically deliver model outputs 

to decision makers through online maps and email notifications.   

The remainder of the paper is organized as follows. First, a Study Area section is presented 

to introduce the region where the model is applied. Second, the Data and Methods section is 

presented to outline the available data sources, the pre-processing steps used to translate this data 

for use in the model, steps taken to speed-up the model, and the post-processing steps used to 

automate the model output dissemination. Next, the Results and Discussion section presents a 

prototype of the software and the results of applying the system for an extreme weather event. 

Finally, the Conclusion section provides a summary of the key research outcomes and steps that 

could be taken to further advance this work. 

 

2. Study Area 

The study area is in a portion of the Chowan River basin that is within VDOT's Hampton 

Roads District in Virginia, USA and is approximately 5,780 km2 (2,230 mi2) (Figure 1). The study 

area includes the Meherrin, Nottoway, and the Blackwater Rivers. The longest flowpath along 

NHD flowline features is approximately 175 km (109 mi) with a slope that varies from nearly 0% 

to 21%. The study area includes 493 georeferenced VDOT bridges and culverts. Due to a high 

portion of the study area consisting of low-relief terrain, in the coastal plain, especially in the 

eastern part of the study area (Figure 2), the system utilizes a 2D hydrodynamic model called Two-

dimensional Unsteady Flow (TUFLOW) (https://www.tuflow.com/) (Syme, 2001). The upstream 

portion of the project domain consists of relatively higher-relief terrain and, therefore, the 

Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS), a lumped hydrology 

model that is less computationally intensive, was deemed appropriate to model flows in these 

https://www.tuflow.com/
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areas. By using HEC-HMS to generate inflow boundary conditions from the high-relief portion to 

the low-relief portion of the study area, the overall system runtime is kept smaller. Including these 

high-relief upstream watersheds, the project domain is approximately 11,000 km2 (4,240 mi2). 

 

Figure 1 Model domain composed of the study area where the TUFLOW model is run and the 
11 subwatersheds where HEC-HMS is used to model contributing inflow to the study area. 
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Figure 2 The digital elevation model (DEM) with 10 m resolution for the study area, including 
the 11 subwatersheds that contribute inflow to the study area. 

3. Data and Methods 

3.1. R2S2 System 

The R2S2 system was first developed by Hassan Water Resources, PLC to integrate 

multiple datasets with sophisticated hydrodynamic models to provide flood risk prediction during 

severe storm events to the Hampton Roads District of VDOT (Hassan Water Resources PLC., 

2012). The R2S2 system consists of software that processes the many input files required for the 

TUFLOW model, runs HEC-HMS to establish boundary conditions for TUFLOW, and processes 

output files from TUFLOW to determine inundated bridges and culverts (Figure 3). Constant input 

data for the R2S2 include a DEM with 10 m resolution, soil data (SSURGO,  2012), and land use 
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data with 30 m resolution. The observational data must be accessed and processed in real-time 

from federal data providers. R2S2 uses real-time products for rainfall including National Oceanic 

and Atmospheric Administration (NOAA) gauges (see Figure 8) and Next Generation Weather 

Radar (NEXRAD) radar data, where available for specific storms. The rainfall data is used as 

inputs for both R2S2 hydrologic models. First, the HEC-HMS model uses the rainfall data to 

generate the hydrograph for each of the 11 subwatersheds that border the study area. Then the 11 

outlet hydrographs generated are applied to the TUFLOW model as boundary conditions along 

with the rainfall data to generate water levels throughout the study area. The model is calibrated 

and evaluated using historic stream gauge data. Eventually, real-time stream data will be used to 

set initial conditions. 

3.2. Rainfall Forecast Data Preparation 

A preliminary step for building a flood warning system is to identify and automate the pre-

processing of the forecast rainfall product. In this study, the procedure to collect and process the 

forecast rainfall data for model input was automated to reduce human translation errors and 

decrease the time between when new rainfall forecasts are available and new water level forecasts 

can be generated. Both the TUFLOW and HEC-HMS models in R2S2 require input rainfall data, 

but in different formats. TUFLOW has three approaches for applying the rainfall directly to the 

computational cells: (i) polygons covering multiple cells assigned as rainfall time series, (ii) 

gridded rainfall created as ASCII files for each time step or as one NetCDF file, and (iii) a rainfall 

control file that allows a user to specify point time series over the model domain and specify how 

the rainfall is interpolated to the model cells. HEC-HMS has two approaches for applying the 

rainfall data: (i) a rainfall time series for each basin stored in a data storage system (DSS) file that 

is prepared by HEC-DSSVue, a program for viewing, editing, and manipulating DSS files 
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(CEIWR-HEC, 2009), and (ii) gridded rainfall that is prepared by HEC-GridUtil, a utility program 

for managing gridded data with HEC-DSS (Steissberg and McPherson, 2011). 

 

Figure 3 R2S2 workflow. 

The identification of appropriate forecast datasets focused on NOAA rainfall products that 

are in a grid format and can be quickly accessed for real-time flood warning applications. Several 

potential forecast datasets were identified for the study region, including products from the Rapid 

Refresh (RAP), the High-Resolution Rapid Refresh (HRRR), the North American Mesoscale 

Forecast System (NAM), and the National Digital Forecast Database (NDFD). The RAP, HRRR, 

and NAM products are all provided by the National Center for Environmental Prediction (NCEP) 

and the NDFD is provided by the National Weather Service (NWS). These forecast products were 

compared in terms of their spatial resolution, temporal resolution, and frequency of model 

initiation (i.e., model cycle). Results of this comparison and the code written to automate the 

retrieval and reformatting of the rainfall data to meet the requirements of the TUFLOW and HEC-
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HMS models are presented in Section 4.1. This code is tested to retrieve the required rainfall data 

with the desired formats for the two models and with the correct spatial and temporal resolution.  

 

3.3. Speeding-up R2S2 execution 

TUFLOW is the computational bottleneck within the overall R2S2 workflow. Using a CPU 

for computation takes more than three days to run a 15-day simulation period, the duration over 

which Hurricane Sandy caused high flows in the Study region. The use of multiple CPUs and 

GPUs has been investigated as a means of speeding-up 2D hydrodynamic models (Kalyanapu et 

al., 2011; Brodtkorb et al., 2012; Rostrup and Sterck, 2010; Castro et al., 2011; Lacasta et al., 

2013; Sanders et al., 2010; Garcia et al. 2015). As stated in the introduction, GPU use offers the 

performance of smaller clusters at a much lower cost (Jacobsen et al., 2010). Therefore, GPUs 

were investigated for speeding-up the TUFLOW model rather than using CPU clusters. 

TUFLOW comes with a GPU Module capable of operating on multiple GPUs in parallel. 

We explored the use of both local and Amazon Web Services (AWS) resources for GPU 

computations. The TUFLOW GPU Module uses an explicit scheme only, while the TUFLOW 

CPU solver (TUFLOW Classic) uses an implicit scheme. Explicit schemes could be less 

numerically stable compared to implicit schemes if using the same time step and grid cell size. 

Also, explicit schemes require a small time step and high resolution grid cell size to compete with 

well-developed implicit schemes (Boris, 1989; Anderson and Wendt, 1995; Tóth et al., 1998; Pau 

and Sanders, 2006; Zhao, 2008). The differences between these two schemes could be large and 

need to be checked for consistency. 

Two local GPU resources with different capabilities were explored (Table 1). M1 is a 

machine with a modest GPU and other resources typical of most desktop computers. M2 is a high-
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end workstation with 64 GB of RAM and two NVIDIA GeForce Titan Graphics cards. There are 

several types of AWS Elastic Compute Cloud (EC2) instances designed for GPU-based 

computations. There are two sizes of G2 instances, which have lower-end GPUs, and three sizes 

of P2 instances, which have higher-end GPUs (Table 2). The properties and hourly fees for these 

instances vary, as shown in Table 2. 

Table 1 Local machines with GPUs used to investigate TUFLOW model execution times. 
ID Type CPU RAM 

(GB) 
GPU 

GPU RAMInfo 
M1 Desktop Dell 

OptiPlex 990 
3.40 GHz, 4 Core(s) 16 NVIDIA Quadro K2000, 2.00 GB of GPU memory, 

384 SMX CUDA parallel processing cores, clock 
speed of 954 MHz 

M2 Desktop Viz Lab 
ESCHER 

3.20GHz, 3201 
Mhz, 6 Core(s) 

64 Two units of NVIDIA GeForce GTX TITAN, each 
with 6.00 GB, 2688 CUDA parallel processing cores, 
clock speed of 837 MHz for each 

 

Several tests were performed to measure the TUFLOW model execution times using the 

AWS EC2 g2.8xlarge and p2.8xlarge instances. The TUFLOW model with a 50 m grid cell size 

was used for these tests. The g2.8xlarge instance, which has 4 GPUs, was used to execute the 

model with 1, 2, 3, and 4 GPUs. Likewise, the p2.8xlarge instance, which has 8 GPUs, was used 

to execute the model with 1 through 8 GPUs. Each of these model runs was performed twice to 

ensure that model runtimes were consistent. Following this, comparisons of results generated from 

CPU and GPU solvers were performed. Lastly, using the GPU solver preliminary calibration steps 

were performed by varying grid cell size and input parameters. 
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Table 2 Comparison between G2 and P2 EC2 instances performance and costs as of 06/06/2017. 
EC2 

Instance Model GPUs vCPU Memory 

(GiB) GPU Info 
Storage 

(GB) 
Hourly 

Fee 
G2 g2.2xlarge 1 8 15 NVIDIA GRID K520 GPUs, 

each with 4.00 GB of GPU 
memory, 1536 CUDA parallel 
processing cores, clock speed 
of 800 MHz 
 

SSD 1 x 60 $0.767 

g2.8xlarge 4 32 60 SSD 2 x 120 $2.878 

P2 p2.xlarge 1 4 61 NVIDIA K80 GPUs, each 
with 12.00 GiB of GPU 
memory, 2496 CUDA parallel 
processing cores, clock speed 
of 875 MHz 
 
 

EBS $1.084 

p2.8xlarge 8 32 488 EBS $8.672 

p2.16xlarge 16 64 732 EBS $17.344 

 

3.4. Post-processing and Automating Model Output Dissemination 

The last main step for the flood warning system is to post-process and automatically 

disseminate the system output. One of the most important outputs from the TUFLOW model for 

this study is the maximum water level at each computational cell within the study area throughout 

the simulation duration. Using these maximum water levels and the VDOT bridge locations and 

deck elevations, a post-processing workflow was created and tested to automate email notifications 

providing bridges expected to be overtopped based on model projections.  

In addition to sending email alerts, map-based visualizations can be created to display 

flooded bridge locations with flooded depths over the model domain. We explored and tested three 

options for creating such maps (Table 3). A first, and more basic, option involved a user manually 

uploading a keyhole markup language zipped file (KMZ) containing post-processed output from 

the model to the Google Maps website for visualization, providing a quick and simple method to 

visualize the flooded bridge locations. A second, more complex, option was to use Geosheets 

(https://www.geosheets.com/), an add-on to the GoogleSheets app that reads and displays post-

processed tabular data stored in a Google Drive account as a Google Sheet. Unlike the manual 

upload of a KMZ file to Google Maps, this second method can be automated to dynamically update 
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the flooded bridge locations map. This option allows for some customization of map display 

without needing to configure and deploy a web server. The third and most complex option was 

developing a custom web interface using the Google Maps API to visualize the output KMZ files 

along with workflow run information (see Section 4.4). This alternative required the deployment 

of a web server and was therefore more complex; however, it provided the highest potential for 

customization and supported the dissemination of other workflow run information in addition to 

the flooded bridge locations. The post-processing workflow and three visualization options were 

tested to ensure the correct dissemination of the model output and the proper visualization for the 

decision-maker. 

Table 3 Post-processing visualization options. 
Visualization Options Real-time  Input File Need Web Server?  Customization 

1. Google Maps Website No KMZ No Low 
2. Geo Sheets Yes Google Sheet No Medium 
3. Google Maps API Yes KMZ Yes High 

 

3.5. Design of an automated flood warning system through AWS 

After automating the retrieval of the forecast rainfall data, speeding-up the 2D model, and 

providing methods for post-processing and automating the model output dissemination, the final 

step was to create a seamless workflow using cloud services to link these individual components 

together without requiring intermediate user action. The goal of this automated workflow was to 

identify the flooded bridges and/or culverts in a time duration sufficient for warning and 

emergency management purposes based on the highest resolution, reliable rainfall forecast data 

and by using a publicly available cloud computing resources. Given that a single cloud instance 

capable of all of these tasks would be too expensive to continuously run, the design of this 

workflow had to meet several requirements: (i) a smaller, low-cost instance to monitor the rainfall 
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data for upcoming extreme events, and visualize model outputs (ii) a larger instance with NVIDIA 

GPU capabilities to accommodate and execute the hydrologic models and other processing scripts 

and (iii) a storage resource to archive model inputs such as the processed rainfall data and model 

outputs for later analysis. The smaller instance would trigger the larger instance when a flood event 

is forecasted. This smaller instance would also assume the role of maintaining the website to 

display and disseminate the model output so that it can be continuously available. To automate 

these steps of the workflow, the GPU instance would need to execute a batch file that (i) runs the 

pre-processing scripts to prepare the rainfall data, (ii) runs the hydrologic models, (iii) runs the 

post-processing script for preparing the model output for dissemination, (iv) sends outputs to other 

cloud resources for archiving and visualization, and (v) removes the model output files from the 

GPU instance.  

Each individual step in the workflow (i.e. preprocessing the rainfall data, speed-up the 

model, and post-processing and disseminating the model output) was tested separately as 

mentioned in the previous subsections.  Then the entire workflow was tested together locally and 

remotely using AWS resources. To test locally, the batch file that initiates the workflow was run 

along with the workflow scripts and hydrologic models that were placed on a local machine with 

NVIDIA GPU capabilities. Then, the batch file was test to run the whole workflow seamlessly. 

Then a low-cost smaller instance was created to monitor the forecast rainfall data. The smaller 

machine was then set up to monitor forecasted rainfall and to trigger the local machine to run the 

batch file and receive post-processed output for visualization purposes. After performing several 

tests of the designed system locally, the batch file and the hydrologic models were placed in a 

larger AWS instance with NVIDIA GPU capabilities. Then the smaller machine was linked to this 
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larger machine with an adjustment to the rainfall threshold to start the larger machine. The AWS-

based system performance was then monitored and analyzed to ensure it was working as expected. 

 

4. Results and Discussion 

4.1. Rainfall Forecast Data Preparation 

Comparison of the spatial resolution, temporal resolution, and model cycle of each dataset 

(Table 4) shows that HRRR was the best forecast rainfall product for our purposes. HRRR is a 

weather prediction system composed of a numerical forecast model and an analysis/assimilation 

system to initialize the model. HRRR is a higher-resolution model nested inside the hourly updated 

RAP. Although RAP can provide upper-level analyses and short-range forecasts, HRRR is best 

used to examine surface and near-surface parameters, such as surface precipitation. The HRRR 

model is run every hour of the day and forecasts out to 18 hours on a 1 hour time-step for each 

cycle. It provides a surface total precipitation product in units of mm of precipitation depth at a 

horizontal resolution of 3 km (NOAA, 2012). Surface total precipitation can be accessed as gridded 

data with dimensions of longitude, latitude, and time. Longitude and latitude are provided in the 

World Geodetic System (WGS) 1984 coordinate system, and time is in units of decimal days since 

1-1-1 00:00:0.0 (NOAA, 2017a). HRRR data are distributed as part of the NOAA Operational 

Model Archive and Distribution System (NOMADS) project, a network of data servers that use 

the Open Source Project for a Network Data Access Protocol (OPeNDAP) (NOAA, 2017a). 

Although the HRRR data was selected as the primary input to the model, the system could 

alternatively use the coarser Quantitative Precipitation Forecast (QPF) from the NDFD dataset, 

which forecasts rainfall for the upcoming 72 hours, to monitor for large rainfall events beyond the 

18 hours horizon captured by HRRR, and thus allowing for a longer lead time for preparing for 
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severe storms. The use of higher resolution rainfall forecast data with a longer lead time will reduce 

the uncertainty of the model, making it a more useful decision support tool, and the system is 

developed in a flexible way that easily enables the application of this better forecast data that may 

be available in the future. 

Table 4 Comparison of available forecast datasets. 

Dataset 
Data 

Provider 
Relevant Data Product 

Resolution 
Forecast 

(hrs) 

Model 

Cycle Spatial 

(km) 

Temporal 

(hrs) 

HRRR NCEP Surface total precipitation 3 1 18 24/day 

RAP NCEP Surface total precipitation 13 1 18 24/day 

NDFD NWS Quantitative precipitation 
forecast 5 6 72 8/day 

NAM NCEP Surface total precipitation 12 1 36 4/day 

 

Figure 4 shows the workflow for downloading and reformatting the forecast rainfall data.  

Pydap, a pure Python library client for OPeNDAP servers, is used to retrieve the desired forecast 

data for the study area. The automated workflow consists of three main parts: (i) access the latest 

available forecast data from the HRRR database, (ii) retrieve the forecast surface total precipitation 

with a horizontal resolution of 3 km in WGS 1984 coordinate system, and (iii) reformat the forecast 

data for model input in the NAD83 UTM 18N projected coordinate system. These rainfall data are 

reformatted as gridded rainfall data for TUFLOW using the Geospatial Data Abstract 

(GDAL/OGR) Python library, and as subwatershed time series for HEC-HMS using HEC-

DSSVue, Python, and Java libraries. To include these direct rainfall data in TUFLOW, a TUFLOW 

Event File (TEF) was created to define the storm event properties. Using the new TEF file, the 

user can run the model for a given storm event using either historic or forecast data. 
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Figure 4 Forecast data workflow from HRRR to R2S2 sub-models, TUFLOW and HEC-HMS. 

 

4.2. Speeding-up R2S2 execution 

The model speed-up was evaluated using rainfall from Hurricane Sandy as input. The 

rainfall lasted for four days and the total modeled time span was 15 days (October 28 - November 

11, 2012). Table 5 summarizes the results of the three TUFLOW model scenarios using the M1 

and M2 machines (see Table 1). Using the CPU, the model took 120 hours to execute, and using 

the modest GPU in the M1 machine, the model took 11.5 hours to execute (10x speed-up compared 

to the CPU). Using the two more powerful GPUs in the M2 machine, the model took only 2.4 

hours to execute (50x speed-up compared to the CPU and 5x speed-up compared to the M1 
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machine using the single GPU). The input timestep did not have a significant effect on the 

execution time when using GPUs, which is due to the explicit scheme within the TUFLOW GPU 

module that takes the input time-step value as an initial value and then optimizes the time-step to 

meet the convergence condition (i.e., courant number ≤1) (BMT WBM, 2016) . 

 

Table 5 Comparison of CPU versus GPU speed-up using local GPU resources (differences 
bolded in each scenario). 

Model 

Specifications 
 

Run Scenarios 
 

Machine  M1 M1 M2 
Processing Unit  CPU GPU GPU 

No. of GPUs  - 1 2 

Time-step (sec)  10 10 10 

Output Cell Size 
(m) 

 25 25 25 

Running Time (hrs)  120 11.5 2.4 

 

A test was also conducted to determine how increasing the number of GPUs influenced 

model execution time (Figure 5).  As expected, running the model by using different numbers of 

GPUs produced the same output results (i.e., no differences in the maximum water levels).  Figure 

5-a provides the results of this test using the GPU model and the AWS g2.8xlarge instance with 

different numbers of GPUs.  Using the g2.8xlarge instance with one GPU, the model takes about 

4.6 hours to run.  Using the g2.8xlarge instance and increasing the number of GPUs, the minimum 

execution time is 3 hours when all four GPUs are used, which costs about $9 per run. Because 

only four GPUs were available on this instance, we were not able to test whether additional GPUs 

would continue to reduce the running time. Figure 5-b provides the results of this test using the 

GPU model and the AWS p2.8xlarge instance with different numbers of GPUs.  Using the 

p2.8xlarge instance with one GPU, the GPU model takes 2.75 hours to run, which is less than 
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using the g2.8xlarge instance with 4 GPUs. This shows the benefit of the more modern GPUs in 

the P2 versus G2 EC2 instances. Using the p2.8xlarge instance and increasing the number of GPUs, 

the minimum execution time was found to be 1.5 hours, which is achieved when five GPUs are 

used. This run, with the minimum execution time of 1.5 hours, costs about $13 per run, which is 

about 1.5x more expensive than the g2.8xlarge instance run; however, it was 2x faster than the 

g2.8xlarge instance. Comparing this 1.5 hours execution time to the CPU execution time of 120 

hours shows an 80x speed-up for the model. Using six or more GPUs on this instance increases 

the execution time compared to using five due to known tradeoffs caused by data transfers between 

parallel GPU units (Huxley and Syme, 2016).   

 

 

(a) 
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(b) 

Figure 5 Running TUFLOW model through AWS EC2 a) g2.8xlarge instance, and b) p2.8xlarge 
instance with different numbers of GPUs. 

Because the CPU and GPU TUFLOW solvers use different numerical schemes, it is 

important to understand differences in their outputs (Figure 6).  Figure 6 provides the differences 

in maximum water level (Max. WL) generated from executing the model using the CPU and the 

GPU solvers.  The maximum difference in Max. WL across the study area was around 2.5 m (8 

ft), with 87% of the computational cells having differences in the Max. WL less than 0.5 m (1.6 

ft). Figure 7 shows the Max. WLs at each bridge location generated by executing the model using 

the CPU solver versus the GPU solver. The mean absolute error (MAE) of 0.48 m (1.6 ft) and the 

root mean square error (RMSE) of 0.78 m (2.6 ft) demonstrate a fairly significant difference. In 

this study, we did a preliminary sensitivity analysis by changing the model grid cell size and 

Manning coefficient values, but future research should investigate this difference more fully. 
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Figure 6 Differences between Max. WL generated from CPU solver and GPU solver. 
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Figure 7 Max. WL at bridges and culverts locations generated from CPU solver versus GPU 
solver, with MAE of 0.48 m and RMSE of 0.78 m. 

The model results using both the CPU and GPU solvers were compared against stream 

stage observations for the Hurricane Sandy event. Figure 8 and Table 6 show the USGS stations 

with data availability for the event. The USGS provided unpublished stage data that is considered 

provisional and, therefore, may contain erroneous or missing values due to instrument malfunction. 

This data was processed and cleaned to address this issue before being compared to the model 

output data. Figure 8 also shows the NOAA stations with the available recorded rainfall data for 

the Hurricane Sandy storm event. Hyetographs for this storm event at these stations are shown in 

Figure 9. 
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Figure 8 USGS and NOAA station locations that had Hurricane Sandy data availability in the 
study area.
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Table 6 USGS stations in the study area with information about Hurricane Sandy availability. 

 

Station Name Current 

Status 

 Stage 
 Parameter 

Code Start Date  End Date 

02049500 
USGS 02049500 BLACKWATER 
RIVER NEAR FRANKLIN, VA Active  00065 Gauge 

height 10/23/2016 2/20/2017 

02047500 
USGS 02047500 BLACKWATER 
RIVER NEAR DENDRON, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02045500 
USGS 02045500 NOTTOWAY 

RIVER NEAR STONY CREEK, VA Active  00065 Gauge 
height 10/31/2016 2/28/2017 

02052000 
USGS 02052000 MEHERRIN RIVER 

AT EMPORIA, VA Active  00065 Gauge 
height 10/31/2016 2/28/2017 

02047000 
USGS 02047000 NOTTOWAY 
RIVER NEAR SEBRELL, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02050000 
BLACKWATER RIVER AT HWYS 

58/258 AT FRANKLIN, VA Active  00065 Gauge 
height 10/31/2016 2/28/2017 
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Figure 9 Hurricane Sandy hyetographs at the five NOAA stations near the study area (see Figure 
8). 

The finite volume schemes used by the 2D models are heavily dependent on the grid cell 

shape and size (LeVeque, 2002; Caviedes-Voullième et al., 2012). The TUFLOW model GPU 

solver uses only a Cartesian grid with the capability of changing the grid cell size. The TUFLOW 

model was executed using the GPU solver with grid cell sizes of 50 m, 40 m, 30 m, and 20 m. The 

output data from each of these runs were compared to the observed data at the six USGS stations 

and model results from CPU solver execution with a cell size of 50 m. The modeled peaks using 

the GPU solver with 50 m grid cell size were significantly higher than the observed data and the 

model peaks using the CPU solver at four USGS stations (02045500, 02047000, 02047500, and 

02052000). However, at one of the USGS stations (02050000), the modeled peak using the GPU 
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solver with 50 m grid cell size was significantly lower than the observed data and the modeled 

peak using the CPU solver. Finally, at another USGS station (02049500), the modeled peak using 

the GPU solver with 50 m grid cell size was almost the same as the model peak using the CPU 

solver. However, both peaks were significantly lower than the observed data.  

The differences between the modeled and observed peak stages could be due to the lack of 

adequate bathymetry data in the major rivers and tributaries. In all of the minor tributaries, and 

some stretches of the main rivers, bathymetry had to be assumed because of a lack of this data. 

This also could be due to the coarse DEM resolution (10 m) as the TUFLOW model extracts and 

utilizes the ground elevation at the model grid cell center for the GPU solver and at the model grid 

cell center and mid-sides for the CPU solver (BMT WBM, 2016). Calibration was also a challenge 

due to the scarcity of operating river gauges and limited available data for event-based calibration 

over such a large study area. In some instances, 2D models are not used due to the low resolution 

of the spatial data available and the difficulties faced when calibrating the model parameters 

(Caviedes-Voullième et al., 2012). This large study area includes only six USGS gauges that 

recorded stream stage during Hurricane Sandy. Three of these stations are located on the same 

main stream at the eastern part of the study area, one is in the middle of the study area, and the 

other two are located in the western part of the study area. 

When the cell size of the model using the GPU solver decreases, a significant reduction in 

the peak stages was observed at four of the six USGS stations (02045500, 02047000, 02047500, 

and 02052000). At station 02050000, the modeled peak stage using the GPU solver increased with 

decreasing cell size, while at station 02049500 the peak stage remained nearly constant with each 

cell size. Decreasing model grid cell size improved the matching of observed peaks at four of the 

six observation sites and, therefore, we decided to use a smaller cell size in the model application. 
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The drawback of a smaller cell size is an increase in model execution time. Figure 10 shows the 

model execution time using the GPU solver with different grid cell sizes (50 m, 40 m, 30 m, and 

20 m) for the M2 machine (see Table 1). Figure 10 also shows the MAE resulting from 

comparisons of model output generated using the GPU solver at different cell sizes and the model 

output generated using the CPU solver with the 50 m cell size. Based on these results, we chose 

the 30 m cell size since there is only a small difference between this scenario and the scenario 

resulting from the GPU solver with a 20 m grid cell size model and because there is a significant 

increase in the model runtime (2.8x from 10.2 hours to 28 hours). 

 

Figure 10 Model run time using GPU solver with different grid cell sizes and the corresponding 
MAE versus CPU solver using M2 machine (Table 1). 

In addition to decreasing the cell size to 30 m, we also adjusted the Manning coefficient 

(n) to test its sensitivity and ability to improve matching of observed peak stages obtained from 
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the six USGS stations. The model initially had Manning coefficient values based on the study area 

land use. To assess the sensitivity of the model to changes in the Manning coefficient, this value 

was changed to be 0.6n, 0.8n, 1.0n, 1.4n, and 1.8n. As the Manning coefficient value decreased, 

the modeled peak stages became closer to the observed peaks at stations 02045500, 02047000, 

20047500, and 02052000. After reducing the grid cell size from 50 m to 30 m and changing the 

Manning’s coefficient from 1.4n to 0.6n, the model came the closest to matching observed peak 

river stage. This represents a preliminary calibration of the model that should be more fully 

explored through additional research. 
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Figure 11 Comparisons between the observed stage depth data and the modeled depth generated 
from using a GPU solver with 30 m cell size and 0.6n Manning coefficient values. 



 

  31 

The analysis of model response to changing the grid cell size and Manning’s coefficient 

was done by applying rainfall time series for Hurricane Sandy from five rain gauges to polygons 

that each covered multiple model grid cells. TUFLFOW also has the capability of using direct 

rainfall data that applies input rainfall values to every cell in the 2D hydrodynamic model. When 

the rainfall is directly applied to the cells, the model routes flow based on the cell topography on 

a cell by cell basis (Huxley and Syme, 2016). Huxley and Syme (2016) investigated using this new 

method by applying the direct gridded rainfall data and found that GPU direct rainfall hydraulic 

modeling can be used as an alternative to runoff-routing hydrology modeling. To check the model 

behavior using the direct gridded rainfall data method with the chosen grid cell size and Manning’s 

coefficient values, rainfall data from Hurricane Sandy was obtained from the Tropical Rainfall 

Measuring Mission (TRMM). This data has resolution of 0.25×0.25°, resulting in 16 cells covering 

the entire study area. We hoped to use rainfall data from NEXRAD, provided by NOAA, but there 

was no data available for the dates of Hurricane Sandy for our study area. 

Table 7 Statistical analysis to compare the time to peak and peak stage depth shown in Figure 11 

 USGS 

Station 

 

Observation 

 CPU   GPU-30m-0.6n 

 
  Value Relative Error (%)  Value Relative Error (%) 

P
ea

k
 S

ta
g

e 
D

ep
th

 (
m

) 02045500  0.43  0.62 44.19  0.53 23.26 

02047000  1.03  1.08 4.85  1.01 -1.94 

02047500  0.5  0.38 -24.00  0.58 16.00 

02049500  2.11  0.57 -72.99  0.95 -54.98 

02050000  1.37  1.43 4.38  2.56 86.86 

02052000  0.42  1.15 173.81  0.34 -19.05 

T
im

e 
to

 P
ea

k
 S

ta
g

e 

D
ep

th
 (

h
rs

) 

02045500  103  98 -4.85  96 -6.80 

02047000  121.5  135 11.11  123.25 1.44 
02047500  90.75  103.75 14.33  66.75 -26.45 
02049500  99.75  122.75 23.06  78.5 -21.30 
02050000  126  145.5 15.48  87 -30.95 
02052000  76.5  95 24.18  98 28.10 
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Figure 11 and Table 7 show the results of using the gridded rainfall data provided by 

TRMM when executing the model using the GPU solver with a grid cell size of 30 m and 

Manning's coefficient value of 0.6n. Using the gridded rainfall data with this coarse resolution 

produces results very similar to those found when using the rainfall gauge data and the polygon 

method. The model results almost match the observation peaks at the 02045500, 02047000, 

02047500, and 02052000 USGS stations. The other two USGS stations, 02049500 and 02050000, 

where the modeled peaks are further from the observed peaks, are located on the same stream at 

the eastern part of the study area along with Station 02047500. This area has the mildest slopes in 

the study area (almost flat) (see Figure 2). The station furthest upstream is 02047500. At this 

station, the model predicts a slightly higher peak than the observed data and the modeled peak 

using the CPU model. The second station (02049500) has a much lower peak than the observed 

data; however, the modeled peak using the CPU solver is even lower than the modeled peak using 

the GPU solver. The peak at station 02050000 is much higher than the observed peak and the 

modeled peak using the CPU solver. The variation between the observed and modeled peaks at 

these three stations could be due to the coarse DEM resolution (10m×10 m) used in the model. 

The slightly higher peak at 02047500 may be due to slopes derived from the DEM being milder 

than the real slopes. The much lower peak and lower volume at 02049500 could be due to 

unrealistically steep slopes derived from the DEM compared to real slopes. Like with 02047500, 

the much higher peaks at 02050000 may be due to the DEM-derived slopes, which are milder than 

the real slopes. This would explain why the differences in the peaks at stations 02049500 and 

02050000 are nearly the same but the one is below and the other is above the observed peak. If the 

slopes of the contributing areas to station 02049500 were milder, the peak there would be higher 

and the peak at the downstream station (02050000) would be lower, making both closer to the 
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observed data. This might improve if a higher DEM resolution is used within the model. Future 

work will explore this and the use of NEXRAD, which was unavailable for the study time period, 

to better understand the benefit of this rainfall data for predicting the stage depth peaks. 

4.3. Post-processing and Automating Model Output Dissemination 

Figure 12 shows the resulting workflow for model output post-processing and 

dissemination of model results. This workflow uses different Python libraries such as 

GDAL/OGR, and Simple KML library (SIMPLEKML) to generate the visualization of the flooded 

bridge locations and an email library to automatically email warnings to decision makers. The 

workflow and its products could be used with ArcMap, Google Maps, Google Earth, Geosheets or 

a custom website such as the one we have configured and hosted on the AWS, EC2 t2.micro 

instance (Figure 12). There are three products for visualization that can be generated from this 

workflow: (i) an ESRI shapefile that includes just the flooded bridges, (ii) a KMZ file that includes 

flood information for all bridges that can be visualized through Google Maps or Google Earth, and 

(iii) a dynamic and real-time visualization on Geosheets created by automatically uploading the 

bridges with their flooded status to a Google Sheet using the Google Drive API. Figure 13 shows 

an example of an advanced visualization for the flooded bridges directly on the Geosheets 

permanent URL. This visualization shows the bridges as not overtopped (green), nearly 

overtopped (yellow), and overtopped (red) from forecast rain events. Unlike hosting a website to 

visualize the KMZ file on the EC2 t2.micro instance, using Geosheets requires no webserver. 

However, hosting our own website in the long run will provide much more flexibility and the 

potential for more capabilities.  
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Figure 12 Post-processing workflow for producing different visualization resources. 
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Figure 13 Real-time visualization with permanent URL for visualizing the flooded bridges 
location using Geosheets.  (https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-

Bridges-in-The-Hampton-Roads-District). 

4.4. Automated flood warning system through AWS 

Figure 14 shows the design of the automated workflow that meets the design requirements 

outlined in the methods section. This solution uses three AWS resources: (i) a low cost EC2 

t2.micro instance running a Linux operating system, (ii) an GPU Instance (i.e. EC2 G2 or P2 

instance) with Windows operating system, and (iii) a S3 Bucket. The EC2 t2.micro instance has 

two roles in the workflow. First, the instance continuously monitors rainfall forecasts to identify 

an extreme weather event. When an extreme weather event is identified, the EC2 t2.micro instance 

starts the GPU Instance and a model run is initiated. Second, the EC2 t2.micro instance serves the 

webpages used to visualize and disseminate the model results computed by the larger GPU 

Instance. The GPU Instance includes all of the model components and retrieves, preprocesses and 

prepares the forecast rainfall data for the hydrologic models. This same instance also executes the 

2D hydrologic model. After the model runs, the GPU Instance sends model outputs to the EC2 

https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
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t2.micro instance for visualization and dissemination. The model outputs are also sent, along with 

the processed forecast rainfall data used as model inputs, to the S3 bucket for archiving and 

reproducibility purposes.  

 

Figure 14 Design of the automated workflow for a flood warning system using AWS resources. 

There are two classes of users that can access the model outputs via the webpages running 

on the EC2 t2.micro instance: regular users and power users. Regular users can access the current 

flooded locations and can register to receive alerts via email whenever locations are forecasted to 

flood. In the current implementation, regular users do not need to authenticate within the system. 

Power users have more privileges than the regular users, including access to all the archived 

inundation maps from the S3 bucket and the ability to run the model at any time via a powershell 

script or through the website hosted by the t2.micro instance. 
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AWS has the ability to securely control access to services and resources for specific users 

using the Identity and Access Management (IAM) service. This service was used to give 

permission to the EC2 t2.micro instance to start and stop the other GPU Instance. A new user was 

created and then given permission for starting and stopping the GPU Instance (Figure 15). By 

using the new user credentials, the GPU Instance ID, and command lines executed in a scripting 

language or at the AWS command line interface (CLI), the GPU Instance can be started and/or 

stopped automatically. The main script in the development web framework on the EC2 t2.micro 

instance is called server.py. Code was added to this Python script for monitoring and accessing the 

other GPU Instance. In this code, a process is run every hour to check the HRRR rainfall data, 

which is updated hourly. If the forecasted rainfall is over a certain threshold value, it will start the 

GPU Instance that includes the hydrologic model. The EC2 t2.micro instance keeps monitoring 

the GPU Instance to make sure that it is fully started (this is done by adding additional permissions 

to the user policy). Then, the EC2 t2.micro instance uses Secure Shell (SSH) to initiate a batch file 

that runs the main workflow for retrieving the data, executing the model, and generating the output. 

The 2D hydrologic model takes about 10 minutes to run through a forecasted period (18 hours) 

using a model grid resolution of 50 m on the M2 machine, while it takes about 38 minutes using 

the model grid resolution of 30 m on the M2 machine. The running time for the model with 30 m 

grid resolution is expected to be lower when using the EC2 p2.8xlarge instance. Using the 

p2.8xlarge AWS instance with five GPUs, it is expected that the runtime will be 6.3 minutes for a 

50 m grid cell size and 24 minutes for 30 m grid cell size. 
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Figure 15 The policies between the EC2 t2.mico and G2 or P2 instances. 

The batch file that automates the model execution operates as follows. First, the HRRR 

data is retrieved and processed. Following this, the hydrologic models are run and the maximum 

water level at each computational cell is computed and recorded for the duration of the simulation 

period. Once the maximum water level output file is available, the KMZ file is generated, which 

includes information about each bridge and culvert provided by VDOT, the maximum water level 

predicted by the model, and by how much each bridge would be overtopped. The KMZ file is sent 

to the t2.micro instance to be used for visualization using the AWS Private Key generated for the 

EC2 t2.micro instance. Another policy added to the IAM user is used to access the S3 Bucket and 

archive the processed rainfall data (Figure 16). A log file is generated that includes a record of the 
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parameters and scripts used in the whole process as a reference for users or decision makers. The 

log file is sent to both the EC2 t2.micro instance and the S3 Bucket for archiving. Finally, any files 

generated from running the whole workflow are deleted to minimize the storage on the GPU 

Instance. 

A power user can use a powershell script to automatically initialize a model run. The script 

gives the user the option of running the workflow either locally or with the GPU Instance. When 

the workflow is chosen to run locally, the powershell script installs any required dependencies and 

then runs the batch file to start the workflow. If the user chooses to run the workflow through the 

cloud, the script asks for the IAM policy credentials and starts the GPU Instance. Once the instance 

is fully started, the script uses SSH to run the batch file to start the main workflow.  

Figure 16 shows the different policies used by the EC2 t2.micro and G2 or P2 instances to 

access the S3 bucket folder that includes the archive information for each run. Also this figure 

shows the hierarchy of the S3 Bucket folders for archiving the workflow output data. The S3 

Bucket folders receive data from the GPU Instance once it starts. To give full access for these 

specific folders and their contents to the GPU Instance, another policy was added to the IAM user 

(Figure 16). The GPU Instance uses the IAM user policy to access the main folder, 

floodwarningmodeldata, and archive the output data generated by the workflow in each specific 

subfolder. The EC2 t2.micro instance then retrieves the archived KMZ and log files to visualize 

them on the website. This is done by using a separate policy provided by the AWS S3 Bucket 

(Figure 16). 
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Figure 16 Different policies used to access the AWS S3 Bucket data, and the AWS S3 Bucket 
folder hierarchy. 

The t2.micro instance handles the visualization of the output data using a Python based 

micro web framework, Flask (http://flask.pocoo.org/) (Figure 17). When a user accesses the 

website URL (https://vfis-aws.uvahydroinformatics.org) the most recent model output KMZ is 

displayed using the Google Maps JavaScript API. The output KMZ files, along with the 

corresponding log files from only the five most recent model runs, are available on the website to 

save storage space. NGINX (https://nginx.org/en/) and Gunicorn ‘Green Unicorn’ 

(http://gunicorn.org/) sit in between the flask application and the internet working in tandem to 

support many users on the website at the same time and handle the distribution of resources.  

http://flask.pocoo.org/
https://vfis-aws.uvahydroinformatics.org/
https://nginx.org/en/
http://gunicorn.org/


 

  41 

The t2.micro instance also triggers a model run when HRRR rainfall forecast data exceeds 

a given threshold. The forecast rainfall data is therefore retrieved every hour. If the rainfall exceeds 

a certain threshold value it will start the GPU Instance and initialize a model run with the latest 

rainfall data. An alert on the website will show users whether a model is being run, flooding is 

possible, or the model is up to date with no flooding predicted. 

 

Figure 17 EC2 t2.micro instance and the web framework used to build up the website. 

Figure 18 shows the architecture of the website. On the main view, the website contains a 

navbar allowing the selection of which data to view, a link to the log file, a login page, and a page 

to register for email alerts. The main section of the page is taken up by the Google Maps JavaScript 

API. Using the Google Maps JavaScript API allows us to easily display the map interface using 

all of Google’s resources and overlay our output data on top of it. When a user clicks on a marker 
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signifying a bridge, they are presented with a box containing more information about that bridge 

and potential flooding events. Users can sign up and their email will be stored in a secured private 

Structured Query Language (SQL) database. The application will detect when flooding is possible 

and send an email to everyone on the list. Through the website, power users can display output 

data archived in the AWS S3 bucket without having to store output in the t2.micro instance, which 

has a limited amount of storage.  

 

  

Figure 18 Main webpage of the flood warning decision support website. 

 

5. Conclusions 

This work described the creation of a cloud-based flood forecasting system designed to 

assist transportation decision makers in time-sensitive, emergency situations. The flood 

forecasting system was applied for the Virginia Department of Transportation in the Hampton 
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Roads region of Virginia, USA to provide decision makers with forecasts of flooded roadways and 

bridges in near real-time based on rainfall forecasts. By using GPU resources, the model was 

executed for a 15 day duration up to 80x faster (from 120 hours compared to 1.5 hours) compared 

to using a single CPU. An automated cloud-based workflow using AWS resources was designed 

and created to link and enhance the three core model components: (i) retrieval and formatting of 

high-resolution gridded HRRR rainfall forecast data, (ii) execution of the 2D model in a short 

duration to identify flood prone bridges and culverts, and (iii) real-time dissemination of model 

output via generation of an online map with flooded locations and the ability to automatically send 

alert messages via email. 

Using the M2 machine described earlier, the 2D hydrodynamic model, which is the heart 

of the flood forecasting system, completes an analysis for the upcoming 18 forecast hours in 

approximately 10 minutes with a model grid cell size of 50 m and approximately 38 minutes with 

a model grid cell size of 30 m. Using the p2.8xlarge AWS instance with five GPUs, it is expected 

that the runtime will be 6.3 minutes for a 50 m grid cell size and 24 minutes for a 30 m grid cell 

size. For Hurricane Sandy, although the rainfall only lasted 4 days, the effects of the rainfall over 

the study area lasted 15 days. Assuming a 50 m grid cell size model takes 6.3 minutes to run for 

the upcoming 18 forecasted hours on the p2.8xlarge, if the model ran every hour through a 15 day 

period, running the workflow would cost about $350, assuming current AWS prices. For the same 

scenario, changing the  grid cell size to 30 m, modeling 18 hours is expected to take about 24 

minutes to run and cost $1260 for the 15 day duration. However, this assumes using five GPUs; 

further tests are required to identify the optimum number of GPUs to run the model with grid cell 

size of 30 m on the AWS EC2 P2.8 instance for this scenario.  
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Because the TUFLOW 2D model is expensive to run on a continuous basis, it is only used 

during extreme weather events. The t2.micro instance, which costs about $10 per month to run 

continuously, monitors the HRRR forecast rainfall data and compares it to rainfall thresholds that 

represent the amount of rain required to cause potential flooding. In the preliminary 

implementation, we used a fixed value for the threshold. In the future, we plan to find a way to 

compare the HRRR forecast data against the specific thresholds based on the antecedent moisture 

content of the soil before the start of any upcoming storm. 

A main advantage of the cloud-based approach presented here is that it provides a way to 

strategically utilize computational resources only when flood events are likely to occur. 

Additionally, the workflow is automated, start to finish, without the need for any intermediate 

human interaction. This means that a decision maker with little or no experience regarding the 

details of hydrologic modeling, gridded rainfall data, pre- and post-processing procedures, and so 

forth, can easily execute the workflow and obtain and visualize model results. This work presents 

a preliminary calibration of the model, but additional work is needed to calibrate and evaluate the 

model across multiple historical flooding events. This calibration simply was not feasible before 

this work given the long model runtime. It is important to note that this model has only been tested 

for Hurricane Sandy. The local M2 machine, which was able to run the 15 day Hurricane Sandy 

model in 2.4 hours, could be used for the calibration process without excessive cloud costs. Results 

of this study suggest a higher resolution grid will improve model accuracy, but this too comes with 

an increased model runtime. A final challenge that needs more investigation is the differences 

between CPU and GPU generated results. This difference may become smaller with updates to the 

TUFLOW model software. A new version of TUFLOW was recently released, after the completion 

of this study, and includes a significantly enhanced version of the GPU model called TUFLOW 
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HPC (https://www.tuflow.com/). This version uses 2nd order solution accuracy solvers rather than 

the 1st order solvers that is used in the TUFLOW version used in this study. It also allows the user 

to add 2D bridges to the model for better representation within the system and has improvements 

in the multiple GPU speed performance for executing the model. This new version will be used in 

future work to further enhance, calibrate, and evaluate the model. Finally, more research is needed 

to see if improving model input data, such as using a finer DEM resolution for portions of the 

study area or NEXRAD rainfall data, will improve the GPU-based model results.  
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