
 1

Design of a Metadata Framework for Hydrologic Models with an Example 1

Application in HydroShare 2

Mohamed M. Morsya,b, Jonathan L. Goodalla*, Anthony M. Castronovac, Pabitra Dashc, 3

Venkatesh Merwaded, Jeffrey M. Sadlera, Md. Adnan Rajibd, Jeffery S. Horsburghc, David G. 4

Tarbotonc 5

 6

a Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick 7

Road, PO Box 400742, Charlottesville, VA, 22908, USA 8

b Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, P.O. Box 9

12211, Giza 12613, Egypt 10

c Utah Water Research Laboratory, Utah State University, 8200 Old Main Hill, Logan, UT 11

84322-8200, USA 12

d School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 13

47907, USA 14

 15

Highlights: 16

 The design of a metadata framework for model programs and instances is presented 17

 The metadata framework is implemented within the HydroShare system 18

 The framework is built from general standards like RDF, Dublin Core, and BagIt 19

 The implementation is demonstrated for a hydrologic model publication use case 20

 The implementation assists in model sharing, publication, reuse and reproducibility 21

 22

Student
Text Box
This is an Accepted Manuscript of an article published in Environmental Modelling and Software in July 2017 available online: http://dx.doi.org/10.1016/j.envsoft.2017.02.028

 2

Abstract 23

Hydrologists rely on a variety of computational models to make predictions, test hypotheses, and 24

address specific problems related to hydrologic science and water resources management. 25

Scientists and engineers must devote significant effort preparing these computational models. 26

While significant attention has been devoted to sharing and reusing hydrologic data, less 27

attention has been devoted to sharing and reusing hydrologic models. A first step toward 28

increasing hydrologic model sharing and reuse is to define a general metadata framework for 29

models that is flexible and, therefore, applicable across the wide variety of models used by 30

hydrologists. To this end, this paper proposes a general approach for representing hydrologic 31

model metadata that extends the Dublin Core metadata framework. The framework is 32

implemented within the HydroShare system and applied for a model sharing use case. This 33

example application demonstrates how the metadata framework implemented within HydroShare 34

can assist in model sharing, publication, reuse, and reproducibility. 35

 36

Keywords: 37

hydrologic modeling; model metadata; linked data; Dublin Core metadata initiative; 38

reproducibility 39

 40

Software Avaialbility: 41

 The software created in this research is available free and open source as part of the 42

larger HydroShare software repository. The HydroShare software respository is managed 43

through GitHub and is avaialable at https://github.com/hydroshare/hydroshare. 44

 45

https://github.com/hydroshare/hydroshare

 3

1. Introduction 46

A large variety of hydrologic models exists, with each model tailored to address specific 47

challenges related to hydrologic science and water resources management (Singh et al., 2002; 48

2006). These models have grown in complexity, with many simulating increasingly detailed 49

processes occurring within water systems. When scientists and engineers use models, they must 50

devote significant effort to collect data, construct model inputs, and calibrate and validate model 51

parameters. Many hydrologic models also require sophisticated data pre-processing routines, 52

often with many manual steps (e.g., Billah et al., 2016). For this reason, many models come with 53

supporting applications such as Geographic Information System (GIS) interfaces, calibration 54

tools, visualization software, and other utility software systems to assist in the data preparation 55

process (e.g., Winchell et al., 2007). These data pre-processing steps must be repeated each time 56

a new model is created to simulate a system. This introduces a number of challenges. From a 57

pragmatic perspective, it is an inefficient use of scientists’ time. Perhaps more importantly, it 58

inhibits scientists’ ability to reproduce studies that have a significant computational modeling 59

component (David et al., 2016; Essawy et al., 2016; Gil et al., 2016). 60

One way to begin to address these challenges is through better approaches for sharing and 61

reusing models built by others. Just as there has been a major push to make better use of data 62

collected and maintained by others, the scientific community can benefit from a similar push to 63

make better use of models built by others. Data sharing and reuse has been strengthened through 64

the adoption of agreed on metadata frameworks. Geospatial data, in particular, has benefited 65

from widely used metadata frameworks that allow scientists and engineers to more easily reuse 66

data collected by others (e.g., ISO, 2003; 2011). More recently, hydrologic time series data have 67

also benefited from the adoption of commonly used metadata frameworks (e.g., Taylor, 2014). 68

 4

While many metadata frameworks exist, none specifically addresses computational hydrologic 69

models. Thus, the objective of this research was to design and implement such a metadata 70

framework for hydrologic models. 71

Designing a metadata framework for hydrologic models poses unique challenges 72

compared to other data types. First, the data required for models are heterogeneous and, in the 73

case of hydrologic models, input for a single simulation can include dozens, if not hundreds, of 74

data files. These files describe properties of the modeling elements, parameters, forcing 75

functions, boundary conditions, and other data needed to execute the model for a given system. 76

Each model largely adopts its own structure and semantics for storing data, making it difficult to 77

standardize across models. Second, hydrologists make use of a large and diverse set of 78

computational models; Singh (2002) cataloged over 65 hydrologic models focusing on watershed 79

hydrology alone. Hydrologists will likely continue to make use of a broad range of models, 80

because each model is tailored for a given application. Some models are well suited for 81

urbanized watersheds, while others are better suited for agricultural watersheds; some models are 82

best for droughts, others for floods; some target regional-scale systems, others plot or hill-slope 83

scales. Each model adopts unique data structures and semantics for both input and output data. A 84

model metadata framework, therefore, must not force all models into a fixed structure, but rather 85

be flexible and able to accommodate this diversity of models. 86

Some studies have begun to address the problem of designing a metadata framework for 87

computational models. The Content Standard for Computational Models (Hill et al., 2001) was 88

one of the first attempts at providing detailed metadata about a numerical model that includes the 89

input and output data for model scenarios. Wosniok and Lehfeldt (2013) provide a concept for 90

metadata-driven architecture for computational fluid dynamics simulations and a way to 91

 5

integrate model descriptions into spatial data infrastructures. The Community Surface Dynamics 92

Modeling System (CSDMS) created a metadata framework and used it to describe over 180 93

geoscience models, including over 50 hydrologic models within its model catalog (see 94

http://csdms.colorado.edu). The CSDMS model category focuses on the software for executing a 95

model, what we refer to in this paper as a model program. It does not extend to the input files for 96

a specific model simulation, or what we refer to in this paper as a model instance. The metadata 97

included in CSDMS also do not follow higher-level metadata standards like Dublin Core. 98

Much of the past research on model metadata has focused on component-based modeling 99

systems. Component-based modeling systems are a tool for integrated environmental modeling 100

where model applications are constructed from a set of “plug-and-play” model components that 101

can be interchanged for different applications (Argent, 2004; Laniak et al., 2013). Metadata 102

frameworks have been proposed for model components generally (Elag and Goodall, 2013), the 103

component interfaces (Gregersen et al., 2007; Peckham et al., 2013), and the variables passed 104

between linked components (Peckham, 2014). Our work is different in that we focus on 105

standalone model programs instead of component-based modeling systems. We take this focus 106

because, while the adoption of component-based modeling systems is growing, the vast majority 107

of ongoing hydrologic studies are using standalone model applications and a metadata 108

framework is needed to enhance the sharing of these standalone model instances. Also, this work 109

could later be merged with past work on model component metadata to create an overarching 110

model metadata framework. 111

A motivating factor for this research is the design and development of a new system 112

called HydroShare (https://www.hydroshare.org). The goal of HydroShare is to advance 113

hydrologic science by enabling the scientific community to more easily and freely share products 114

 6

resulting from their research – not just the scientific publication summarizing a study, but also 115

the data and models used to create the scientific publication (Horsburgh et al., 2015; Tarboton et 116

al., 2014; Tarboton et al., 2013). HydroShare is a web-based collaborative system developed 117

with the goal of sharing, accessing, and discovering hydrologic data and models (Tarboton et al., 118

2013). It was designed and built by the authors, along with a larger team of researchers, in 119

collaboration with the Consortium of Universities for the Advancement of Hydrologic Science, 120

Inc. (CUAHSI). 121

The basic unit of digital content in HydroShare is called a “resource.” One of the key 122

steps in designing HydroShare was defining metadata for different resource types (Horsburgh et 123

al., 2015; Tarboton et al., 2014). While users can upload any digital content as a “generic 124

resource” within HydroShare, these generic resources only support basic metadata elements 125

defined by the Dublin Core metadata framework that are applicable to any data type. Specific 126

resource types in HydroShare can extend this Dublin Core metadata to provide new metadata 127

elements that support functionality specific to common hydrologic datasets (Horsburgh et al., 128

2015). For example, the time series resource types support additional metadata terms relevant to 129

a time series, and the system can automatically plot time series resources because of this 130

metadata (Sadler et al., 2015). Because a model metadata framework like this did not exist for 131

hydrologic models, we first had to design one. Then, we used the model metadata framework we 132

designed in HydroShare to implement new resource types specific to the needs of hydrologic 133

models. While the HydroShare implementation motivated the design of the model metadata 134

framework, it is important to emphasize that the metadata framework described here is general 135

and can be adopted across cyberinfrastructure systems. 136

 7

The remainder of the paper is organized as follows. First, a Methodology section is 137

presented discussing the design of the model metadata framework and describing an example use 138

case where the design implemented in HydroShare was used to share results from a hydrologic 139

modeling study. Next, the Results section presents the implemented software and the results 140

from the example use case. Finally, the paper concludes with a summary discussion of the 141

proposed approach and steps that could be taken to further advance this work. 142

 143

2. Methodology 144

2.1. Metadata Framework Design 145

The metadata framework design considers a computational model as two distinct 146

concepts: 1) a model program resource, which includes software for executing a model 147

simulation and generating outputs, and 2) a model instance resource, which includes the input 148

files and, optionally, the output files for a specific simulation. The Resource Description 149

Framework (RDF) is used for defining concepts and their associated metadata using a subject, 150

predicate, and object structure (http://www.w3.org/RDF). As a simple example, this basic 151

structure can be used as illustrated in Figure 1 to show that a model instance (subject) is executed 152

by (predicate) a model program (object). Each resource has core metadata defined by the Dublin 153

Core metadata framework and extended metadata designed through this research. Details of the 154

metadata for model programs and model instances are described in the following subsections. 155

 8

 156

Figure 1. Key components of the model program and model instance resources. 157

2.1.1. Model Program Resource Metadata 158

The model program resource encapsulates all of the software and files necessary to 159

identify, install, and run a given hydrologic model. The model program includes a model engine, 160

which is the core mathematical modeling logic for the model (Morsy et al., 2014). This model 161

engine is often, but not always, embedded within a larger application that includes visualization, 162

typically using a graphical user interface (GUI), and other utility software. It is not uncommon 163

for multiple model programs to use the same or similar model engine; for example, there are 164

multiple model programs with different user interfaces that all use the Storm Water Management 165

Model (SWMM) as its model engine. A key design decision was to link a model program with a 166

model instance, rather than a model engine with a model instance. This was done because 167

developers may make subtle but important changes to publically available model engines within 168

their own model programs. Thus, it is difficult to guarantee that two independent model 169

programs, both making use of the same original model engine, will produce the exact same 170

output. 171

The goal when identifying metadata for a model program was to sufficiently describe a 172

specific version of the software, its computer system compatibility, as well as its proper and 173

 9

intended use. To foster interoperability, this metadata consists of a basic description of the 174

resource using the Dublin Core metadata standard (shown using the “dc” and “dcterms” prefixes) 175

that is then extended with resource specific metadata (Figure 2; Table 1). These extended 176

metadata terms are given the “hsterms” prefix, indicating that they belong to a namespace of 177

terms defined by HydroShare, and are subdivided into content-related and resource-related 178

categories. Content-related metadata includes items such as the computational engine, software, 179

release notes, and documentation to describe the content that should accompany a model 180

program resource. A model program is required to include a model engine, while the other 181

content-related metadata items are optional. 182

The resource-related metadata describe characteristics of a model program using high-183

level terminology with the aim of clearly defining and distinguishing between similar model 184

program resources. These include release date, website, version, language, software repository, 185

and operating system metadata. The release date element provides general information about the 186

hydrologic model to aid in version identification, while the website element is intended to 187

provide users additional model-specific information. The remaining elements describe the 188

software attributes and system compatibility of the model program as shown in Table 1. These 189

metadata terms can serve many different uses, including enhanced search and discovery across a 190

large collection of model program resources. They also aim to support reproducibility by 191

capturing the exact model program used to execute a particular model instance. 192

 193

 10

 194

Figure 2. Model program resource metadata elements as RDF triples. The # prefix signifies an 195

attribute that can be populated when implementing the metadata framework for a given model 196

program. 197

 11

Table 1. Model program extended metadata element definitions. 198

Metadata Term Cardinality Definition

hsterms:modelVersion 1..1 Unique model version and/or build number
hsterms:modelProgramLanguage 0..* The programming language(s) used to write the

model program

hsterms:modelOperatingSystem 0..* Compatible operating system(s) for executing the
model program

hsterms:modelReleaseDate 0..1 The date that this version was released
hsterms:modelReleaseNotes 0..* Notes regarding the release
hsterms:modelWebsite 0..1 A URL to the website maintained by the model

developers

hsterms:modelCodeRepository 0..* A URL to the source code repository (e.g., Github,
Bitbucket, etc.)

hsterms:modelDocumentation 0..* Documentation related to the model (e.g., User
manual, theoretical manual, reports, etc.)

hsterms:modelSoftware 0..* The model program software (e.g., source code,
installer, utilities, etc.)

hsterms:modelEngine 0..* The model engine (e.g., source code, binary,
executable, etc.)

 199

2.1.2. Model Instance Resource Metadata 200

 The model instance resource describes the input files required for execution by a model 201

program. A model instance resource may optionally include the output files resulting after 202

execution. The design for metadata associated with a model instance was intended to capture the 203

aspects required to define and distinguish between different model instances across the wide 204

variety of hydrologic models. To accomplish this, the design first includes a generic model 205

instance. This generic model instance has metadata elements applicable to any model program. 206

The design also includes specific model instances that inherit the properties of a generic model 207

instance and add new properties that are relevant to one or more model programs. This pattern is 208

illustrated in Figure 3. In this figure, some specific model instance resources are listed as 209

examples, with the idea that this list can be extended to include other hydrologic models as well. 210

 12

This design, therefore, provides two ways to capture metadata for a model instance. The default 211

option would be to use a generic model instance resource type. However, if available, a specific 212

model instance resource type tailored for the model program used to execute that model instance 213

should be used instead for enhanced functionality and metadata capture. 214

 215

Figure 3. Generic model instance and specific model instance hierarchy. Model program, generic 216

model instance, SWAT model instance, and MODFLOW model instance metadata have already 217

been designed, while metadata for the other specific model instances are either in development 218

or planned for the near future. 219

Figure 4 presents the metadata for a generic model instance. Because the generic model 220

instance extends the Dublin Core metadata framework, it inherits the metadata terms defined by 221

Dublin Core (shown using the “dc” and “dcterms” prefix). One metadata element defined in 222

Dublin Core that is particularly important for model instances is the coverage element. This 223

metadata element defines the temporal and spatial extent of a resource. For a model instance 224

resource, the temporal coverage provides the start and end date/time for the simulation; the 225

spatial coverage provides a place name and geographic coordinates for the model instance. The 226

 13

spatial coverage can be represented by a point (e.g., the centroid of the modeling domain) or a 227

box (e.g., the bounding box of the modeling domain). This coverage element does not represent 228

the exact shape of the model instance, but rather its geographic location or extent. 229

The generic model instance is extended with additional metadata elements having the 230

“hsterms” prefix (Figure 4; Table 2). These metadata elements are subdivided into two main 231

classes: ModelOutput and ExecutedBy. ModelOutput includes information about the output data 232

generated by the model after it is executed. Only one element was deemed necessary in the initial 233

design for describing the model output, although more elements could be added later. The 234

element included is includesModelOutput, which allows users to indicate if the output files are 235

included along with the input files as part of the model instance resource. The ExecutedBy 236

element links the model instance resource with the model program resource that is used for 237

execution. ExecutedBy includes two sub-metadata elements: modelProgramName and 238

modelProgramIdentifier. The modelProgramName element stores the name of the linked model 239

program resource, while modelProgramIdentifier stores its unique identifier. By linking a model 240

instance to a model program resource, the ExecutedBy metadata element facilitates later 241

reproducibility of the model results. 242

 243

 14

 244

Figure 4. Generic model instance resource metadata elements as RDF triples. 245

Table 2. Generic model instance extended metadata element definitions. 246

Metadata Term Cardinality Definition

hsterms:modelOutput A class used for describing output for an
executed model instance

 hsterms:includesModelOutput 1..1 A boolean value that indicates if the output
files are included with the model instance

hsterms:executedBy A class that describes the model program
that executes the model instance

 hsterms:modelProgramName 0..1 The name of the model program that
executes the model instance

 hsterms:modelProgramIdentifier 0..1 The identifier for the model program that
executes the model instance

 247

 15

 As an example of a specific model instance, consider an extension to the generic model 248

instance designed to add metadata specific to an instance of the Soil and Water Assessment Tool 249

(SWAT). This SWAT model instance offers extended metadata elements that more fully 250

describe SWAT model instances, but that are not directly applicable to other hydrologic models. 251

It was designed to be compatible with the SWATShare application, which is an interactive Web 252

tool used to run, visualize, and interact with the SWAT model instances (Rajib et al., 2016). The 253

extended metadata elements for a SWAT model instance are shown in Figure 5, and the extended 254

metadata terms are defined in Table 3. 255

 256

Figure 5. SWAT model instance metadata as RDF triples. 257

 16

Table 2. SWAT model instance extended metadata element definitions. 258

Metadata Term Cardinality Definition

hsterms:modelObjective 1..* The objective of the model (e.g., hydrology, water
quality, BMPs, climate / landuse change, etc.)

hsterms:simulationType 0..1 The type of the simulation used (e.g., normal simulation,
sensitivity analysis, and auto-calibration)

hsterms:modelInput Class for describing the model instance input files
 hsterms:warm-upPeriodType 0..1 The warm-up period type (always years)
 hsterms:warm-upPeriodValue 0..1 The numeric value of the warm-up period in years
 hsterms:rainfallTimeStepType 0..1 The type of time step used in the simulation for input

rainfall data (e.g., daily or sub-hourly)
 hsterms:rainfallTimeStepValue 0..1 The time step value associated with the rainfall data
 hsterms:routingTimeStepType 0..1 The type of time step used in the simulation for river

routing calculations (e.g., daily or hourly)
 hsterms:routingTimeStepValue 0..1 The time step value used for the river routing

calculations
 hsterms:simulationTimeStepType 0..1 The type of time step type used for model simulation

(e.g., annual, monthly, daily, or hourly)
 hsterms:simulationTimeStepValue 0..1 The time step value used for simulation
 hsterms:watershedArea 0..1 The watershed area in km²
 hsterms:numberOfSubbasins 0..1 The number of subbasins within the watershed
 hsterms:numberOfHRUs 0..1 The number of hydrologic response units (HRUs) within

the watershed
 hsterms:DEMResolution 0..1 The resolution of the digital elevation model (DEM) in

meters
 hsterms:DEMSourceName 0..1 The name of the DEM provider
 hsterms:DEMSourceURL 0..1 The URL of the DEM
 hsterms:landUseDataSourceName 0..1 The name for the land use / land cover (LULC) dataset

provider
 hsterms:landUseDataSourceURL 0..1 The URL for the LULC dataset
 hsterms:soilDataSourceName 0..1 The name for soil dataset provider
 hsterms:soilDataSourceURL 0..1 The URL for Soil dataset
hsterms:modelMethod Class that describes the model methods used in the

simulation
 hsterms:runoffCalculationMethod 0..1 The runoff calculation method used
 hsterms:flowRoutingMethod 0..1 The flow routing method used
 hsterms:PETEstimationMethod 0..1 The Potential EvapoTranspiration (PET) estimation

method used
 hsterms:modelParameter 0..* The parameters used in the model (e.g., crop rotation,

title drainage, point source, fertilizer, tilage operation,
inlet of draining watershed, irrigation operation, etc.)

 259

While SWAT is used to provide an example of a specific model instance, similar 260

metadata could be developed for other models. The design goal of this work, however, is not for 261

our team to capture metadata relevant to all hydrologic models, as doing so would be 262

impractical. Rather, our goal was to design a framework that has a common core and a clear 263

 17

methodology for extending this core for specific hydrologic models. We plan to provide 264

examples, like the SWAT example, that third party developers can follow to create their own 265

specific model instance metadata. By providing a common foundation for metadata and 266

resource-structure across models, there will be a level of standardization that will aid in 267

interoperability across software systems. Specific model metadata acknowledges the diversity 268

among hydrologic models and does not force conformity to a single set of metadata elements. 269

The design also allows for changes in the future. For example, if additional common model 270

metadata elements are identified across hydrologic models, then they can be added to the generic 271

model instance class and inherited by all specific model instances. 272

 273

2.2. Experimental Use Case 274

To demonstrate the metadata design, we used the application of SWMM to study flooding in 275

an urban watershed, from prior research (Morsy et al., 2016), as a use case. We now wish to 276

publish the resulting model instances online. There are many motivating factors for doing this. 277

First, we believe that a model instance, like the journal paper, is an important product from the 278

research and should stand on its own as a citable product. Second, we want to foster ways for 279

other scientists to build from or reuse our model to address their own scientific research 280

questions. Third, we want to ensure that the model program used in our study, including the 281

model engine, utility software, and documentation, is captured within a single online resource. 282

This is important because, after some time, the model program developers may not provide this 283

particular version of the software on their website. Lastly, this is a way of meeting the sponsor’s 284

data management obligations for the research. 285

 18

The objective of this prior modeling study was to better understand the potential of rain 286

gardens as distributed stormwater controls for flood mitigation within an urbanized watershed 287

(Morsy et al., 2016). The specific study area of the research was the Rocky Branch watershed, 288

which is located in downtown Columbia, South Carolina, USA. Because a significant portion of 289

the watershed is developed, high intensity storms that typically occur during the summertime 290

result in flooding at different locations within the watershed. For this study, two different model 291

instances were created (Figure 6). The first model instance is a well-calibrated and evaluated 292

model that simulates flooding events in the Rocky Branch watershed. The second model instance 293

builds from the first model instance and includes additional, hypothetical rain gardens as 294

stormwater controls to test if their addition mitigates flooding in the watershed for storm events 295

with different return periods. 296

 297

Figure 6. Use case implementation as a model program and two model instance resource types. 298

The metadata framework was implemented within HydroShare and used to share the 299

model program and model instance resources for the example application. HydroShare, as 300

introduced earlier, is an online system for managing resources adhering to a Resource Data 301

 19

Model (Horsburgh et al., 2015; Tarboton et al., 2013; 2014). The HydroShare architecture 302

consists of open source components including Django, a web application platform, Mezzanine, a 303

content management system meta-framework, and the Integrated Rule-Oriented Data System 304

(iRODS), an enterprise storage management middleware (Rajasekar et al., 2010) organized as 305

shown in Figure 7 (Heard et al., 2014). Results detailing the technical aspects of the software 306

implementation are presented in Section 3.1. 307

 308

Figure 7. HydroShare’s general architecture emphasizing the connections between the user, 309

HydroShare, iRODS, and third party applications 310

Although a SWMM-specific model instance resource type could have been designed and 311

implemented within HydroShare, we used the generic model instance resource type when 312

 20

implementing the use case to provide an example applicable to any hydrologic model. A 313

SWMM-specific model instance would have allowed for the capture of additional metadata 314

relevant only to SWMM models. Software extensions to HydroShare could then provide custom 315

functionality and applications able to operate specifically on SWMM-model instances. Using the 316

generic model instance offers broad use across hydrologic models, but it lacks the potential for 317

customization that becomes possible when targeting a specific model instance resource type. 318

 319

3. Results 320

3.1. Results for Software Implementation within HydroShare 321

Figure 8 shows the class structure for the new model resource types implemented within 322

HydroShare based on the metadata framework design. Each resource type consists of three main 323

categories of classes: the resource data type class, the classes for the individual extended 324

metadata elements, and the container class that groups all metadata elements. For example, the 325

classes in the three categories for the model instance resource type are 1) 326

ModelInstanceResource, which is the resource data type class, 2) ModelOutput and ExecutedBy, 327

which are the classes representing the extended metadata elements, and 3) 328

ModelInstanceMetaData, which is the class that contains all the metadata elements. The resource 329

type classes for model instance and model program inherit from the BaseResource class, which, 330

in turn, inherits from the Abstract Resource class. This structure allows the model resource type 331

to inherit the Dublin Core metadata elements. Specific model instance metadata, like that for the 332

SWAT model instance resource type, inherits from the generic model instance resource type 333

class. The diagram shown in Figure 8, therefore, could be extended for other specific model 334

instance metadata. 335

 21

 336

Figure 8. Metadata classes for model resources implemented within HydroShare. 337

Each Model resource type extends the BaseResource class by representing specific 338

metadata elements as individual classes. These extended metadata classes inherit from the 339

AbstractMetaDataElement class. In this class, there is one required attribute: term. Other 340

attributes needed for further description can be added. For example, the extended metadata class 341

ExecutedBy for the ModelInstance resource has the model_name, and model_program_fk 342

attributes. The specific metadata elements are grouped in the CoreMetaData class. The 343

ModelProgramMetaData, and ModelInstanceMetaData classes inherit from the CoreMetaData 344

 22

class, which is the metadata container that includes the common metadata element objects. These 345

classes are the link between the ModelProgramResource, the ModelInstanceResource classes, 346

and their extended metadata classes. One-to-one relationships are made between 347

ModelProgramMetaData and ModelInstanceMetaData classes and each of their respective 348

extended metadata classes. These extended metadata classes are then included as supported 349

metadata elements for their related resources (ModelProgram or ModelInstance resources) where 350

they could be used to create, update, and delete class instances associated with these resource 351

types. 352

An important method of the CoreMetaData, ModelProgramMetaData, 353

ModelInstanceMetaData, and SWATModelInstanceMetaData is get_xml. This method converts 354

the stored metadata into an RDF-XML format. The CoreMetaData.get_xml method extracts the 355

generic metadata elements, while the get_xml method for each specific resource extracts the 356

related extended metadata elements. For example, for a ModelInstance resource, the 357

CoreMetaData.get_xml method is used to extract the Dublin Core standard metadata elements, 358

while the ModelInstanceMetaData.get_xml method is used to extract the extended metadata 359

elements. 360

 361

3.2. Results from the Example Use Case 362

Figure 9 illustrates the metadata that can be captured for the example use case using the 363

generic model instance and model program resources. Each resource has a title, creator, and 364

other metadata that follow the Dublin Core metadata standard. In addition, extended metadata for 365

each resource (shown using the “hsterms” prefix) help to more fully describe the model instance 366

and corresponding model program used for executing the model instance. Figure 9 also shows 367

 23

how the model program resource type, in this case the SWMM model (Rossman et al., 2016), 368

and the model instance resource type, in this case a Rocky Branch watershed simulation, are 369

connected using the ExecutedBy relationship. 370

Figure 10 is an activity diagram showing the steps used to create new model resources on 371

hydroshare.org. Three resources were created in this example: a model program resource for the 372

EPA-SWMM model version 5.1.009 (Rossman et al., 2016) and two model instance resources 373

for the Rocky Branch watershed simulations (e.g., Morsy, 2015). Figure 11 shows the Graphical 374

User Interface (GUI) for how a user selects a model resource type within HydroShare. In the 375

current implementation, the model resource types are grouped together under the modeling title. 376

Once the user selects the desired resource type, adds a title, and uploads the related files, the new 377

resource is created in HydroShare and the user sees the landing page for this newly created 378

resource. At this point, a unique identifier specific to the HydroShare system has been 379

automatically assigned to the resource. Later, if the user decides to formally publish the resource 380

in HydroShare, a more formal digital object identifier (DOI) would be assigned to the resource. 381

After a resource is formally published and a DOI is assigned, the user is no longer allowed to 382

make changes to the resource metadata or the uploaded files. Prior to formal publication, 383

authorized users can make changes to the resource at any time. 384

 24

 385

Figure 9. Results of populating the model instance and model program metadata for the example 386

use case. 387

 25

 388

 389

Figure 10. Activity diagram to describe the steps required to create new model resource type 390

within HydroShare. Step 11 is highlighted to indicate that only model instances require coverage 391

and not model programs. 392

 26

 393

Figure 11. Screen shot showing model resource types currently implemented on hydroshare.org. 394

Figures 12 and 13 show the resource specific metadata for the model program resource 395

and the generic model instance resource types, respectively, on their landing pages in 396

HydroShare. These figures show HydroShare’s metadata “edit” mode to illustrate all of the 397

available metadata elements, as HydroShare’s default is to hide metadata elements for which 398

there are no values in regular “view” mode. Note that the model instance is linked to the model 399

program used for execution (Figure 13). Under the “Model Program used for execution” heading 400

on the generic model instance landing page, there is a dropdown list that collects all the available 401

public model program resources in HydroShare. The user chooses the model program resource 402

used to execute the model instance resource from the dropdown list (or adds a new model 403

program resource if it is not already available). Once the user chooses the desired model program 404

resource, a summary of the model program metadata is displayed to aid the user in confirming 405

that the correct model program was selected. 406

 27

Another important aspect of the model instance resource is the coverage metadata. Figure 407

14 shows how the coverage metadata appears in the Coverage tab on the resource’s landing page. 408

As explained above, there are two types of coverage metadata elements: spatial and temporal. All 409

of the spatial metadata is expressed in World Geodetic System (WGS) 84 coordinates, which is 410

used throughout HydroShare. For the use case, the spatial metadata was entered for this model 411

instance as a two-dimensional bounding box (rather than an XY point). Once the user inserts the 412

bounding coordinates, the box will appear on the map so that the user can confirm the spatial 413

coverage extent. The user can also specify the coverage by clicking a point on the map or 414

dragging a box on the map. The temporal coverage metadata consist of start and end dates for the 415

model instance. HydroShare uses this coverage metadata to support both spatial (e.g., map-416

based) and temporal searches to identify relevant resources. 417

 28

 418

Figure 12. Model program resource specific metadata on the resource’s landing page on 419

hydroshare.org (shown in edit mode). 420

 29

 421

Figure 13. Generic model instance resource specific metadata on the resource’s landing page on 422

hydroshare.org (shown in edit mode). 423

 424

 30

 425

Figure 14. Model instance resource type coverage metadata on the resource’s landing page 426

(shown in edit mode) on hydroshare.org. 427

4. Discussion 428

One of the most difficult design decisions in this work was to separate model programs 429

and model instances into two different resources rather than a single combined resource. The 430

design decision was made for the following reasons. First, it allows the model program metadata 431

to be entered once within the system. Second, it simplifies the task of identifying all instances of 432

a given model program stored within the system. Third, it provides a path for online execution of 433

many model instances that are linked to a single model program. We felt these benefits 434

outweighed the added complexity and management needs introduced by separating the model 435

program and model instance concepts into different resources types. We acknowledge that some 436

use cases require incremental changes to a model program’s source code, and we are considering 437

options for capturing these incremental changes to model programs without the need to create a 438

 31

completely new resource every time a model program’s source code has been changed. That 439

said, users are not restricted from uploading a model program within a model instance, if desired. 440

If this becomes common practice, we have considered allowing a model instance resource’s 441

ExecutedBy field to point to itself. This would signify to a user that the model program, whether 442

it be a complied binary file or the source code, is located within the model instance resource. 443

Another key design decision was to allow a model instance resource to be linked to only 444

one model program resource. We realize that it is possible for a model instance to be executed 445

successfully by multiple model program resources (e.g., two model programs with different 446

versions but compatible with the same model instance). However, allowing a model instance to 447

be linked to more than one model program would introduce uncertainty about what program was 448

used to execute the instance for a given study. Reproducibility could be compromised as a result, 449

because executing the model instance with a different model program may return slightly 450

different results. For this reason, the design requires a model instance to be linked to only one 451

model program. 452

We encountered through the use case application the impotant issue of how to handle the 453

case where the person uploading a resource into HydroShare, what HydroShare refers to as the 454

resource’s owner, is not the author of that resource. HydroShare separates intellectual credit 455

attribution from access control and management of content. The Dublin Core vocabulary term 456

"Creator" is used in HydroShare metadata for the intellectual originator of the content. This is 457

displayed as Author on landing pages and used in citations. The term "Owner" is used in access 458

control and management of content and is the HydroShare user typically responsible for 459

uploading the content (although ownership can be transferred after uploading, and others can be 460

assigned permissions to edit and upload content). In the SWMM model program resource 461

 32

example, the EPA-SWMM model was authored by researchers at the United States 462

Environmental Protection Agency (EPA) but, was uploaded to HydroShare by the modeler, one 463

of the authors of this paper. The original authors of SWMM were entered as authors for the 464

resource and the relationship “isCopiedFrom” was added to the resource pointing to the website 465

from which the model program was obtained. With this added relationship, the HydroShare 466

system automatically generates and displays a citation on the resource’s landing page that shows 467

that the resource in HydroShare was replicated from an external source, as shown below. The 468

user that uploaded the resource into HydroShare, but did not author the resource, remains the 469

resource owner but rightly does not receive authorship credit for this resource within the citation. 470

 471

Rossman, L., T.Schade, D.Sullivan, R.Dickinson, C.Chan, E.Burgess (2016). Storm Water Management Model 472

(SWMM), Version 5.1.010 with Low Impact Development (LID) Controls, http://www2.epa.gov/water-473

research/storm-water-management-model-swmm, accessed 4/4/2016, replicated in HydroShare 474

at:http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439 475

 476

A limitation of this work at its current stage is the ability to scale-up to support dozens of 477

different specific model instance resource types. Ideally, the creation of new HydroShare 478

resource types would be simple enough that it could be done by the broader community of model 479

developers. Currently, however, the process of creating a new resource type within HydroShare 480

is time consuming and requires advanced knowledge of the HydroShare system and architecture. 481

One approach to address this would be to focus on simplifying the process for creating new 482

resource types. Another possibility would be to alter the approach described in this paper so that 483

specific model instances are not implemented as new resource types, but still can have extended 484

metadata for specific model programs. In this case, all model instances would be uploaded using 485

http://www2.epa.gov/water-research/storm-water-management-model-swmm
http://www2.epa.gov/water-research/storm-water-management-model-swmm
http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439

 33

a single resource type, but there would be a mechanism to filter the metadata fields available to 486

the user once the user or system identifies the uploaded model instance as being a specific and 487

known type (e.g., a SWAT model instance). More research is needed to test these alternative 488

options in terms of their practicality, usability, and scalability within HydroShare. 489

A longer-term goal of this work is to provide server-side execution of model instances 490

directly through HydroShare. By knowing and storing the exact model program used to execute a 491

model instance within HydroShare, it should be possible to install the model program onto 492

server-side computational resources and execute a model instance using these resources. The 493

updated model instance including the newly generated output files could be automatically added 494

to HydroShare via HydroShare’s existing web service application programming interface (API), 495

updating the original resource. Research on methods for achieving this goal, given the 496

complexities of server-side model execution including the potential for large model instance 497

sizes and long model execution times, has begun. Being able to execute a model instance directly 498

through HydroShare could offer significant benefits including model reproducibility where a 499

model run is performed in a controlled environment preconfigured with all required software 500

dependencies. 501

 502

5. Conclusions 503

This work presents a model metadata framework to support discovery, sharing and 504

interpretation of hydrologic models. Key features of the framework are (1) that the model 505

program and model instance are separate concepts with a one-to-many relationship (many 506

instances may exist for a single model program), (2) that metadata for these concepts extend the 507

well recognized and commonly used Dublin core metadata, and (3) that the model instance 508

 34

concept is a hierarchy with a generic parent class implementable for any model program, and a 509

more specific level tailored for certain model programs. 510

A key challenge in this or any other metadata framework design is providing the right 511

balance between rich metadata for adequately describing details of resources and minimal 512

metadata that is critical and can be easy populated. The growing number of generic data 513

repositories available to hydrologists (e.g., figshare.com, zenodo.org, institutional repositories, 514

etc.) largely adopt a minimal metadata approach. These systems provide metadata roughly 515

equivalent to the metadata used to describe a generic resource in the HydroShare system. While 516

this generic metadata could be used to describe, share, and discover model programs and model 517

instances, it misses many of the important properties of these resources that could be leveraged 518

for improved search, discovery, and use of model resources. The purpose of the metadata 519

analysis and design presented here is to provide a more thorough, detailed metadata approach for 520

model programs and instances. We expect to improve this metadata design over time as lessons 521

are learned from its use, and as progress is made within the broader metadata and scientific 522

modeling communities. 523

With the growing number of systems that serve a role within the larger 524

cyberinfrastructure being built to support science, interoperability between these systems is 525

becoming a more pressing need. If these systems are built from an agreed upon metadata 526

framework, then it simplifies the transfer of resources between the systems. This would 527

encourage each system to specialize in selected use cases while relying on external systems to 528

handle other use cases outside of its scope. For example, in this work HydroShare specializes in 529

model metadata, resource sharing, and resource publication. In ongoing research, we are building 530

interoperability with the external SWATShare system that focuses on SWAT model execution 531

 35

and visualization (Rajib et al., 2016). By adopting the same metadata and resource file structure 532

for a SWAT model instance, these model instance resources can be more easily transferred 533

between the two systems, and users can benefit from the functionality and strengths of both 534

applications. 535

Future work will be aimed at improving the usability of the model program and model 536

instance resources within HydroShare. For example, to reduce the time spent manually 537

completing metadata fields, new functionality is planned to automate metadata extraction when a 538

resource is uploaded and the metadata are already present within files uploaded with the 539

resource. Model instances, for example, often include input files containing information on 540

spatial and temporal coverage. The system should read these files, extract whatever metadata it 541

can, and request only missing metadata fields from the user. This approach is difficult, however, 542

given the diversity among hydrologic models; extracting metadata directly from model input 543

files may require a significant amount of custom code. One potential long term benefit of this 544

work would be for all model developers to add functionality that outputs a standard metadata file 545

that can be read by HydroShare and other systems. Ideally, this would be done within the model 546

program source code itself, but it could also be implemented as an external utility program. 547

HydroShare and other systems could then read this file for automatic metadata extraction. 548

 549

6. Acknowledgements 550

This work was supported by the National Science Foundation under collaborative grants ACI-551

1148453 and ACI-1148090. We acknowledge the work of the larger HydroShare development 552

team. 553

 554

 36

7. References 555

Argent, R.M., 2004. An overview of model integration for environmental applications - 556

Components, frameworks and semantics. Environmental Modelling and Software. 19, 219–557

234. doi:10.1016/S1364-8152(03)00150-6 558

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, 559

R.W., 2016. Using a data grid to automate data preparation pipelines required for regional-560

scale hydrologic modeling. Environmental Modelling and Software. 78, 31–39. 561

doi:10.1016/j.envsoft.2015.12.010 562

Boyko, A., J. Kunze, J. Littman, L. Madden, and B. Vargas, 2012. The BagIt File Packaging 563

Format (v0.97), Network Working Group Internet Draft. http://tools.ietf.org/html/draft-564

kunze-bagit-10, accessed August 2016. 565

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of 566

RAPID-Reflections on the development of an open source geoscience code. Earth and 567

Space Science . 3, 226–244. doi:10.1002/2015EA000142 568

Elag, M., Goodall, J.L., 2013. An ontology for component-based models of water resource 569

systems. Water Resoures Research. 49, 5077–5091. doi:10.1002/wrcr.20401 570

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M., 571

Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid 572

technology for reproducible analyses of data-intensive hydrologic systems. Earth and Space 573

Science. 3, 163–175. doi:10.1002/2015EA000139 574

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee, 575

H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X., 576

2016. Towards the Geoscience Paper of the Future: Best Practices for Documenting and 577

 37

Sharing Research from Data to Software to Provenance. Earth and Space Science 578

doi:10.1002/2015EA000136 579

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: Open modelling interface. 580

Journal of Hydroinformatics 9, 175. doi:10.2166/hydro.2007.023 581

Heard, J., Tarboton, D., Idaszak, R., Horsburgh, J., Ames, D., Bedig, A., Castronova, A., Couch, 582

A., 2014. An Architectural Overview Of HydroShare, A Next-Generation Hydrologic 583

Information System. International Conference on Hydroinformatics. CUNY Academic 584

Works. http://academicworks.cuny.edu/cc_conf_hic/311. 585

Hill, L., Crosier, S., Smith, T., Goodchild, M., 2001. A content standard for computational 586

models. D-Lib Magazine 7, 6, 1082-9873. 587

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J., 588

Tarboton, D.G., 2015. Hydroshare: Sharing Diverse Environmental Data Types and Models 589

as Social Objects with Application to the Hydrology Domain. JAWRA Journal of the 590

American Water Resources Assocication 52, 4. doi:10.1111/1752-1688.12363 591

ISO, 2003. ISO 19115:2003 Geographic Information -- Metadata. 592

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020, accessed August 2016. 593

ISO, 2011. ISO 19156:2011 Geographic Information -- Observations and measurements. 594

http://www.iso.org/iso/catalogue_detail.htm?csnumber=32574, accessed August 2016. 595

Lagoze, C., Van de Sompel, H., Johnston, P., Nelson, M., Sanderson, R., Warner, S., 2008. Open 596

Archives Initiative Object Reuse and Exchange: ORE User Guide – Primer 597

http://www.openarchives.org/ore/1.0/primer, accessed August 2016. 598

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G., 599

Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R., Hughes, A., 2013. 600

 38

Integrated environmental modeling: A vision and roadmap for the future. Environmental 601

Modelling and Software 39, 3–23. doi:10.1016/j.envsoft.2012.09.006 602

Michener, W., Vieglais, D., Vision, T., Kunze, J., Cruse, P., Janée, G., 2011. DataONE: Data 603

Observation Network for Earth - Preserving Data and Enabling Innovation in the Biological 604

and Environmental Sciences. D-Lib Magazine 17(1/2). DOI: 10.1045/january2011-605

michener. 606

Morsy, M.M., Goodall, J.L., Bandaragoda, C., Castronova, A.M., Greenberg, J., 2014. Metadata 607

for Describing Water Models, in: International Environmental Modelling and Software 608

Society (iEMSs) 7th International Congress on Environmental Modelling and Software. 609

doi:10.13140/2.1.1314.6561 610

Morsy, M., 2015. Rocky Branch watershed simulation, HydroShare, 611

http://www.hydroshare.org/resource/12d195906f2c41918cb24e11a5c3ab60. 612

Morsy, M.M., Goodall, J.L., Shatnawi, F.M., Meadows, M.E., 2016. Distributed Stormwater 613

Controls for Flood Mitigation within Highly Urbanized Watersheds: Case Study for the 614

Rocky Branch Watershed in Columbia, SC USA. Journal of Hydrologic Engineering. 615

doi:10.1061/(ASCE)HE.1943-5584.0001430 616

Peckham, S.D., 2014. The CSDMS Standard Names: Cross-Domain Naming Conventions for 617

Describing Process Models, Data Sets and Their Associated Variables. In: Proceedings of 618

the 7th International Congress on Environmental Modelling and Software, D.P. Ames, 619

N.W.T. Quinn, and A.E. Rizzoli (Editors). International Environmental Modelling and 620

Software Society (iEMSs), San Diego, California, ISBN: 978-88-9035-744-2. 621

https://csdms.colorado.edu/mediawiki/images/Peckham_2014_iEMSs.pdf 622

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to integrated 623

 39

modeling in the geosciences: The design of CSDMS. Computers and Geosciences. 53, 3–624

12. doi:10.1016/j.cageo.2012.04.002 625

Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C. a., Marciano, R., de Torcy, A., Wan, M., 626

Schroeder, W., Chen, S.-Y., Gilbert, L., Tooby, P., Zhu, B., 2010. iRODS Primer: 627

Integrated Rule-Oriented Data System, Synthesis Lectures on Information Concepts, 628

Retrieval, and Services. doi:10.2200/S00233ED1V01Y200912ICR012 629

Rajib, Md. Adnan, Merwade, V. Luk Kim, I., Zhao, L., Song C. X., and Zhe, S. , 2016. A web 630

platform for collaborative research and education through online sharing, simulation and 631

visualization of SWAT models, Environmental Modelling and Software, 75, 498-512. doi: 632

10.1016/j.envsoft.2015.10.032 633

Rossman, L., Schade, T., Sullivan, D., Dickinson, R., Chan, C., Burgess, E., 2016. Storm Water 634

Management Model (SWMM), Version 5.1.010 with Low Impact Development (LID) 635

Controls, http://www2.epa.gov/water-research/storm-water-management-model-swmm, 636

accessed 6/2/2016, replicated in HydroShare at: http://www.hydroshare.org/resource/2cdda. 637

Sadler, J.M., Ames, D.P., Livingston, S.J., 2015. Extending HydroShare to enable hydrologic 638

time series data as social media. Journal of Hydroinformatics jh2015331. 639

doi:10.2166/hydro.2015.331 640

Singh, V.P., Frevert, D.K., Rieker, J.D., Leverson, V., Meyer, S., Meyer, S., 2006. Hydrologic 641

Modeling Inventory: Cooperative Research Effort. Journal of Irrigation and Drainage 642

Engineering. 132, 98–103. doi:10.1061/(ASCE)0733-9437(2006)132:2(98) 643

Singh, V.P., Woolhiser, D.A., 2002. Mathematical Modeling of Watershed Hydrology. Journal 644

of Hydrologic Engineering. 7, 270–292. doi:10.1061/(ASCE)1084-0699(2002)7:4(270) 645

Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J., Band, L., Merwade, 646

 40

V., 2014. A Resource Centric Approach For Advancing Collaboration Through Hydrologic 647

Data And Model Sharing. International Conference on Hydroinformatics. CUNY Academic 648

Works. http://academicworks.cuny.edu/cc_conf_hic/314. 649

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Ames, D., Goodall, J.L., Band, L.E., Merwade, V., 650

Couch, A., Arrigo, J., Hooper, R.P., Valentine, D.W., Maidment, D.R., 2013. HydroShare: 651

An online, collaborative environment for the sharing of hydrologic data and models 652

(Invited). Present. 2013 Fall Meet. San Fr. Calif., 9-13 Dec. 653

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodball, J.L., Merwade, V., 654

Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., 2014. HydroShare: 655

Advancing Collaboration through Hydrologic Data and Model Sharing, in: Ames, D.P., 656

Quinn, N.W.T., Rizzoli, A.E. (Eds.), International Environmental Modelling and Software 657

Society (iEMSs) 7th International Congress on Environmental Modelling and Software. 658

doi:978-88-9035-744-2 659

Taylor, P., Cox, S., Walker, G., Valentine, D., & Sheahan, P., 2014. WaterML2. 0: development 660

of an open standard for hydrological time-series data exchange. Journal of 661

Hydroinformatics, 16, 2. 425-446. 662

Winchell, M., R. Srinivasan, M. Di Luzio, and J. G. Arnold 2007, ArcSWAT interface for 663

SWAT2005 - User's guide, Blackland Research Center, Texas Agricultural Experiment 664

Station and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research 665

Service, Temple, TX. 666

Wosniok, C., Lehfeldt, R., 2013. A metadata-driven management system for numerical 667

modeling. In Proceedings of OCEANS ’13 MTS/IEEE, San Diego, CA, September 23–26. 668

 669

