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● Combines model APIs and Jupyter notebooks to document modeling workflows 28 

Abstract  29 

Building cyberinfrastructure for the reuse and reproducibility of large-scale hydrologic modeling 30 
studies requires overcoming a number of data management and software architecture challenges. 31 
The objective of this research is to advance the cyberinfrastructure needed to overcome some of 32 
these challenges to make such computational hydrologic studies easier to reuse and reproduce. We 33 
present novel cyberinfrastructure capable of integrating HydroShare (an online data repository), 34 
CyberGIS-Jupyter for Water and high performance computing (HPC) resources (computational 35 
environments), and the Structure for Unifying Multiple Modeling Alternatives (SUMMA) 36 
hydrologic modeling framework through its application programming interface  for orchestrating 37 
model runs. The cyberinfrastructure is demonstrated for a complex computational modeling study 38 
on a contiguous United States  dataset. We present and discuss key capabilities of the 39 
cyberinfrastructure including 1) containerization for portability across compute environments, 2) 40 
Globus for large data transfers, 3) a Jupyter gateway to HPC environments, and 4) Jupyter 41 
notebooks for capturing the modeling workflows.  42 

Keywords 43 

Reproducibility; Computational Hydrology; Jupyter; HPC; Containerization 44 

Software and Data Availability 45 

The data and Jupyter notebooks used in this study were published on HydroShare with persistent 46 
citable Digital Object Identifiers (DOIs). A collection resource in Hydroshare (Choi et al., 2022a) 47 
holds the resources containing the data and Jupyter notebooks further described in the following 48 
table. A Hydroshare account (http://hydroshare.org) and access to the CyberGIS-Jupyter for Water 49 
computing gateway (accessed through HydroShare) are required to execute the Jupyter notebooks 50 
in the second and third resources. 51 

Resource Description Reference 

Original NLDAS forcings for the CAMELS 
basins can be obtained as a NetCDF file* 

Mizukami and Wood, 2021 

SUMMA Simulations using CAMELS 
Datasets on CyberGIS-Jupyter for Water**  Choi et al., 2022b 

SUMMA Simulations using CAMELS 
Datasets for HPC use with CyberGIS-Jupyter 

for Water** 
Choi et al., 2022c 

http://hydroshare.org/
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*The data from the CAMELS dataset (Newman et al., 2015a) was consolidated into one NetCDF 52 
file taking advantage of OPeNDAP data services supported by the HydroShare THREDDS 53 
server and web application connector (Tarboton and Calloway, 2021). 54 

**The SUMMA setup for the CAMELS basins can be obtained from the summa_camels folder 55 
of the HydroShare resources. 56 

List of relevant URLs 57 

CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupyter-water 58 
Docker: https://www.docker.com 59 
HydroShare REST API: https://www.hydroshare.org/hsapi/ 60 
Numpy: https://www.numpy.org 61 
Pandas: https://pandas.pydata.org 62 
pySUMMA: https://github.com/UW-Hydro/pysumma/releases/tag/v3.0.3 63 
Seaborn: https://seaborn.pydata.org 64 
Singularity: https://sylabs.io  65 
SUMMA: https://github.com/CH-Earth/summa/releases/tag/v3.0.3  66 
xarray: http://xarray.pydata.org 67 
XSEDE: https://www.xsede.org  68 

https://go.illinois.edu/cybergis-jupyter-water
https://www.docker.com/
https://www.hydroshare.org/hsapi/
https://www.numpy.org/
https://pandas.pydata.org/
https://github.com/UW-Hydro/pysumma/releases/tag/v3.0.3
https://seaborn.pydata.org/
https://sylabs.io/
https://github.com/CH-Earth/summa/releases/tag/v3.0.3
http://xarray.pydata.org/
https://www.xsede.org/
https://www.xsede.org/
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1 Introduction 69 

Reproducibility, the ability to duplicate and verify previous findings, is a foundational principle in 70 
scientific research. In computational hydrology, Melsen et al., (2017) highlighted two contrasting 71 
definitions of model reproducibility: (1) “bit- reproducibility” which is defined as exact replication 72 
of a study, including the exact same numbers forming the results, and (2) “conclusion- 73 
reproducibility” which focuses on reproducibility of the conclusions of a study as the conclusions 74 
are expected to hold if the same experimental approach is applied. They argue that “conclusion-75 
reproducibility” (replicating a study’s conclusions) may be more important than “bit-76 
reproducibility” (exactly replicating model runs) because hydrological theories need to be tested 77 
beyond bit-reproducibility by investigating conditions under which theories can be confirmed or 78 
falsified. Even so, conclusion-reproducibility itself goes beyond the simple sharing of code and 79 
data as open-source and online resources typically touted for achieving reproducibility. The code 80 
and data must be accompanied by well-documented workflows with readable and reusable code 81 
(Chen et al., 2020; Mullendore et al., 2021; Simmonds et al., 2022). Reusable code requires 82 
providing open-source computational environments in which the code can be executed. Ensuring 83 
this reuse and reproducibility is a non-trivial task; it requires not only adopting new capabilities 84 
for handling complex software and big data, it also requires careful software engineering practices 85 
to integrate these new capabilities into well designed and built cyberinfrastructure (Merkel, 2014).  86 

A growing body of researchers have been discussing and proposing guidelines and strategies for 87 
reproducible computational modeling (e.g., Bush et al., 2021; Choi et al., 2021; Knoben et al., 88 
2022; Mullendore et al., 2021; Simmonds et al., 2022). In recent work, Knoben et el. (2022) 89 
presented a novel approach for creating a hydrologic model at any location or scale (local to global) 90 
by separating model-agnostic and model-specific configuration steps within cyberinfrastructure 91 
workflows. Choi et al. (2021) described a general strategy for creating modern cyberinfrastructure 92 
to support open and reproducible hydrologic modeling as the integration of three components: (1) 93 
online data repositories; (2) computational environments leveraging containerization and self-94 
documented computational notebooks; and (3) Application Programming Interfaces (APIs) that 95 
provide programmatic control of complex computational models. As an example of this general 96 
approach, Choi et al. (2021) also presented an implementation that used (1) HydroShare as the 97 
online repository, (2) two different Jupyter instances, one hosted by the Consortium of Universities 98 
for the Advancement of Hydrologic Science, Inc. (CUAHSI) and a second hosted by CyberGIS-99 
Jupyter for Water, as the computational environments, and (3) pySUMMA, a Python wrapper for 100 
manipulating, running, managing, and analyzing of SUMMA (Structure for Unifying Multiple 101 
Modeling Alternatives), as the model API.  102 

While Choi et al. (2021) focused mainly on the system design and demonstrated their approach 103 
with a fairly simple modeling use case, reproducibility in computational hydrology can present 104 
some difficult challenges when dealing with large-scale hydrologic studies (Hutton et al., 2016). 105 
These challenges mostly pertain to the use of “big data” and computationally expensive and time-106 
consuming resources needed for reproducibility of complex hydrologic modeling studies.  Hutton 107 
et al., (2016) notes that in these cases, new techniques are needed to ensure scientific rigor. In this 108 
paper, we provide an example of the overall system design outlined by Choi et al. (2021) as applied 109 
to a complex hydrologic study by Van Beusekom et al. (2022) (hereafter referred to as the VB 110 
study). We develop the necessary cyberinfrastructure to reproduce this study for selected sub-111 
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domains and discuss the challenges and opportunities in ensuring conclusion-reproducibility for 112 
complex hydrologic studies.  113 

The VB study evaluated the effect of the temporal resolution of surface meteorological inputs (or 114 
forcings) on modeled hydrological fluxes and states for 671 basins across the contiguous United 115 
States (CONUS). It quantified the difference in hydrologic outcomes based on daily or sub-daily 116 
forcings for multiple model configurations and parameter values. Reproducibility of the VB study 117 
if one was given only the input data and model code would be challenging because it requires the 118 
installation and configuration of the modeling framework SUMMA (Clark et al., 2015b, 2015a), 119 
the data volumes are very large, and the model runs require High Performance Computing (HPC) 120 
resources. The complete VB study consisted of 704 6-year model runs for each of the 671 basins 121 
(or 2.8 million model years). SUMMA was implemented with a single hydrologic response unit 122 
for each basin, resulting in a single output time series for each basin for each model configuration. 123 
For every model run, the output consisted of 14 hydrological variables, which required 6 MB per 124 
model simulation, or 2.834 TB for the entire study. While few researchers may be interested in 125 
reproducing the entire VB study, the more common use case and the focus of this study, would be 126 
to repeat or extend the VB study for a subset of the basins. We want to enable others to reproduce 127 
the VB study for subsets of the original domain as a basis for doing additional research enabling 128 
conclusion-reproducibility rather than the bit-reproducibility. For such an approach to be effective, 129 
it is not sufficient to provide the open-source SUMMA code and model input data; one must also 130 
provide the additional components described by Choi et al. (2021), i.e., computational 131 
environments, models exposed through APIs, and documented model workflows to create a 132 
cyberinfrastructure that lowers the barrier to reuse and reproducibility.  133 

This research contributes to the growing literature advancing cyberinfrastructure for hydrology 134 
and other geoscience fields. Yang et al., (2010) illustrated the importance of using HPC in 135 
computationally intensive geospatial sciences and hydrologic modeling. Essawy et al., (2016) 136 
demonstrated server-side workflows for large-scale hydrologic data processing, although they did 137 
not make use of HPC in their application. Lyu et al., (2019) used containerization and combined 138 
computational environments including HPC and High Throughput Computing (HTC) 139 
cyberinfrastructure to directly run the models using Jupyter notebooks. Gan et al. (2020), 140 
integrated a hydrologic data and modeling web service with HydroShare as a data sharing system 141 
to show how this integration leads to a findable and reproducible modeling framework. Gichamo 142 
et al., (2020) used web-based data services to prepare input data for hydrologic models. Kurtz et 143 
al. (2017) introduced a cloud-based real-time data assimilation and modeling framework and 144 
showed how parallel processing can be used for complex hydrologic models in the cloud. 145 
However, unlike the VB study, none of Lyu et al. (2019), Gan et al. (2020), Gichamo et al. (2020) 146 
and Kurtz et al. (2017) applied their methods on a computationally extensive complex hydrologic 147 
use case. Therefore, the challenges and opportunities of using cyberinfrastructure for 148 
reproducibility of complex, large-scale hydrologic modeling. for which HPC and big data 149 
approaches are required, remain largely unexplored. 150 

To address this research gap, we designed and implemented cyberinfrastructure to enable intuitive 151 
access to HPC computational environments and to support data transfers into and out of the HPC 152 
environment. Additionally, we provide a workflow that allows users to replicate parts of the study 153 
within their own computing environments. We also perform a workflow run-time performance 154 
analysis that compares different model scenarios by varying the size of simulations across different 155 
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computing environments, providing users with a guide towards selection of the computing 156 
environment depending on the size of their simulations. The cyberinfrastructure provides a starting 157 
point for users to modify the hydrologic model setups, thus going beyond reproducibility (i.e., the 158 
ability to duplicate and verify previous findings) into replication where one modeling methodology 159 
can be used to answer the same scientific research question but with new input data (as highlighted 160 
by Essawy et al. (2020)). The cyberinfrastructure may also serve as an educational resource by 161 
providing an intuitive way for students to perform complex hydrologic modeling studies. The data 162 
and cyberinfrastructure are provided through HydroShare to run on any basin for which we provide 163 
a SUMMA setup to assist the modeler in analyzing basins individually.  164 

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of 165 
the VB study, the cyberinfrastructure, the model workflows, and the model scenarios used for a 166 
science use case subsetted from the VB study as well as the model workflows run-time 167 
performance analysis. Section 3 provides results and discussion. The results focus on the modeling 168 
use case and an analysis of the workflow run-time performance for different computing 169 
environments. The discussion focuses on opportunities and challenges learned from our experience 170 
designing and building the cyberinfrastructure to support our modeling workflows. Finally, our 171 
conclusions and recommendations are provided in Section 4. 172 

2 Methods 173 

2.1 Overview of the VB study 174 

The VB study used 671 basins to study the effects of the temporal resolution of the meteorological 175 
forcings on hydrologic model simulations across the CONUS. The basins are part of the CAMELS 176 
dataset (Catchment Attributes and MEteorology for Large-sample Studies; Newman et al., 2015b) 177 
a large-sample hydrometeorological dataset across the CONUS consisting of input forcings, basin 178 
attributes, and relevant historical streamflow records. The VB study used SUMMA (Clark et al., 179 
2015b) to configure multiple model instances for each basin, representing eight different model 180 
configurations and 11 different sets of model parameter values. In addition, eight forcing datasets 181 
were constructed. In each of these forcing datasets one of the meteorological inputs was modified 182 
so that the diurnal cycle was replaced by the mean value over that day. The VB study performed 183 
704 (8×11×8= 704) 6-year model runs for each CAMELS basin, consisting of one year of model 184 
initialization and five years of actual simulation. Model outputs for 14 simulated variables were 185 
stored to evaluate the sensitivity of the simulations to changes in model forcings, model 186 
configurations, and model parameters (Figure A1 and Table A1). The VB study results 187 
demonstrated that (1) the effect of each forcing input on each model output varies by model output 188 
and model location, (2) the use of a particular parameter set may not be critical in determining the 189 
most and least influential forcing variables, and (3) the choice of model physics (i.e., using 190 
different model configurations) could change the relative effect of each forcing input on model 191 
outputs.  192 

The VB study was run with scripts on the Cheyenne supercomputer (a 5.34-petaflops, high-193 
performance computer built for the National Center for Atmospheric Research; Computational and 194 
Information Systems Laboratory (2017) ), and it took a few days to complete the runs. For each 195 
basin, the output size for a single 6-year run was 6 MB. Thus, reproducing the entire study is 196 

https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne
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computationally expensive and also requires large amounts of storage (704 runs × 671 basins × 6 197 
MB = 2.834 TB). However, the cyberinfrastructure allows individual basins to be run 198 
independently. Here, we focus on a use case in which a researcher wishes to reproduce a subset of 199 
the VB study by analyzing one or a few basins within a cloud cyberinfrastructure environment to 200 
reach conclusion-reproducibility. The conclusion-reproducibility that we aimed in this study is 201 
solely a qualitative one and if the presented cyberinfrastructure can be successfully applied to 202 
studies differing from the original study, i.e., the VB study, the conclusion- reproducibility is 203 
achieved. 204 

2.2 Cyberinfrastructure design and implementation 205 

Following the approach described in Choi et al. (2021), we designed and implemented 206 
cyberinfrastructure (Figure 1) to replicate the VB study by integrating (1) the HydroShare online 207 
data repository, (2) CyberGIS-Jupyter for Water Computing Gateway (CJW CG) and high-208 
performance computational environments, and (3) a model API that can be utilized in scripts using 209 
Jupyter notebooks (here the pySUMMA API). Each of these three components is further explained 210 
in the following subsections. 211 

 212 

Figure 1: The three primary components of the general cyberinfrastructure (following Choi et al. 213 
2021) with seamless data transfers for open and reproducible environmental modeling. 214 
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2.2.1 Online data repositories 215 
We used HydroShare, an online collaboration environment, as the online data repository 216 
(Horsburgh et al., 2016; Tarboton et al., 2014). A collection resource in HydroShare, which can 217 
be found at Choi et al. (2022a), contains three resources holding the data, computational 218 
environment, and models (Figure 1).  219 

The HydroShare resource holding the data (Mizukami and Wood, 2021) contains the forcing data 220 
set for the 671 CAMELS basins. The forcings are based on the hourly NLDAS-2 (North American 221 
Land Data Assimilation System; NLDAS-2, 2014 ; NLDAS-2 is hereafter referred to as NLDAS). 222 
The original NLDAS hourly forcing data were created on a 0.125 x 0.125 degree grid. To create 223 
hourly SUMMA model forcings, NLDAS outputs were spatially averaged over each of the 671 224 
CAMELS basins and merged into one NetCDF file. With this format, an OPeNDAP server 225 
(OPeNDAP, 2021) can extract data for selected basins on the server, so that the user does not have 226 
to download the entire CONUS dataset to a local computer. HydroShare offers this capability via 227 
its THREDDS Data Server (TDS). 228 

2.2.2 Computational environments 229 
The developed computational environments provide a consistent software environment that is 230 
independent of each user’s own operating system and software libraries, making it possible to 231 
study a computationally expensive research problem. Figure 2 shows each computational 232 
environments component, and the interoperability between the computational environments and 233 
HydroShare. One computational environment was implemented on the CJW CG cloud service for 234 
studies with limited computational demand, e.g., a study of only a few basins, or as an instructional 235 
tool, or for model debugging. A second computational environment was developed on an HPC 236 
resource to reproduce a problem more representative of challenges posed by the use of big-data in 237 
the VB study. The HPC environment also allows the user to study a particular basin in greater 238 
detail. In this study, the CJW CG computational environment is used to provide (1) the model 239 
execution environments configured as Docker images to enable execution of the SUMMA model 240 
for studies with limited computational demand (i.e., those need to use CJW CG Workflow), and 241 
(2) cyberinfrastructure for preprocessing, postprocessing and data storage for both studies with 242 
limited computational demand (need to use CJW CG Workflow) and with high computational 243 
demand (i.e., those need to use HPC Workflow) (Figure 2). The HPC computational environment 244 
is only used for providing model execution environments configured as Singularity containers to 245 
enable execution of the SUMMA model for studies with higher computational demand. More 246 
details on each computational environment are provided in the rest of this section. 247 

  248 
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 249 

Figure 2: CJW and HPC computational environments with model execution environments 250 
configured as Docker image or Singularity container to support concurrent model execution 251 

through Jupyter notebooks, and use of Globus to transfer model outputs from HPC.  252 
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CJW CG is a cloud computing environment interoperable with HydroShare. It is an instance of 253 
CyberGISX (Yin et al., 2017) that serves the data- and computation-intensive needs of the water 254 
and environmental communities. We used CJW CG because it is publicly available, is 255 
interoperable with advanced cyberinfrastructure resources (such as the HPC resource used in this 256 
study) and has been serving the water and environmental communities to support their modeling 257 
needs.  258 

Reproducibility was facilitated by using containerization of the SUMMA model and the 259 
pySUMMA API with Docker (Merkel, 2014) in the case of the CJW CG environment or 260 
Singularity in the case of the HPC environment (Kurtzer et al., 2017) along with a computational 261 
gateway interface to Jupyter notebooks (pySUMMA and the notebooks are described in a later 262 
section) (Figure 2). Although using Docker is a common approach to containerize the model 263 
dependencies, we used Singularity in the HPC environment because it is designed to work 264 
seamlessly with existing batch job systems to support HPC applications.  The containerization and 265 
interface are hosted on the CJW scientific cloud service hosted on Jetstream cloud (Hancock et al., 266 
2021; Stewart et al., 2015; Towns et al., 2014). The Dockerfile is hosted on a GitHub repository 267 
(Li, 2021) with pre-built docker images being shared on a Docker Hub repository. Singularity 268 
container used by the HPC environment is hosted on CyberGIS-Compute Service, a middleware 269 
platform allowing seamless access to HPC resources via Python-based Software Development Kit 270 
and core middleware services (CyberGIS-Compute Service, 2021; Li et al., 2022). The singularity 271 
container was created through docker images conversion. CyberGIS-Compute Service also 272 
handles submitting jobs to HPC as well as large data transfer from HPC through Globus (will be 273 
discussed in section 2.2.4). 274 

The Conda software package was used to manage the project specific computational environment 275 
on CJW, allowing the user to build a Python environment with the SUMMA model, pySUMMA 276 
API, and other computational dependencies. This was done by providing a kernel version for the 277 
project (CyberGIS Center HydroShare Development Team, 2022). Using this stable kernel, which 278 
captures all the required dependencies with their specific versions, ensures careful software version 279 
control. 280 

 281 

2.2.3 Model Application Programming Interface (API) 282 
The model API pySUMMA was chosen to be part of the interactive tool. The pySUMMA API 283 
(Choi et al., 2021) wraps the SUMMA hydrologic modeling framework (Clark et al., 2015a) and 284 
allows the user to script the use of the SUMMA model using Python. It facilitates model 285 
configuration and allows for local execution of the model by either using a Docker container or a 286 
locally compiled SUMMA executable (Choi et al., 2021). With pySUMMA, a user can modify 287 
SUMMA input files and run SUMMA inside a Python script, as well as automatically parallelize 288 
runs and visualize output. In the simplest case the pySUMMA Simulation object wraps a single 289 
instance of a SUMMA simulation.  290 

For users who choose to analyze multiple basins at a time in the CJW CG environment instead of 291 
the HPC environment, the notebook automatically will configure a pySUMMA Distributed object, 292 
which provides an interface to spatially distributed simulations and handles parallelism and job 293 
management under the hood. In this study, multiple SUMMA simulations are run in each basin, 294 
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so a pySUMMA Ensemble object is used to manage multiple runs with different configurations. 295 
In the HPC computational environment a custom backend was written to handle parallelism using 296 
Message Passing Interface (MPI), reducing the need for users to customize the configuration based 297 
on the type of job that they are running. A high-level description of pySUMMA is presented in 298 
Figure 1. The simulation.py enables the execution of the SUMMA model and, along with 299 
file_manager.py, decisions.py, force-file_list, and output_control.py, allows for manipulating 300 
SUMMA configuration files. The distributed.py enables the parallel execution of SUMMA. 301 

2.2.4 Data management and transfer 302 
The input data for this study consists of the SUMMA configuration files and the forcing data for 303 
the 671 CAMELS basins. The configuration files (e.g., geometries information for the 671 304 
CAMELS basins along with their attributes such as hru_id) are shared within each of the two 305 
HydroShare resources holding the Jupyter notebooks. The forcing data are provided in a 306 
HydroShare resource (Mizukami and Wood, 2021). 307 

The output files resulting from running the notebooks using the CJW CG and HPC computational 308 
environments are: (1) NetCDF output files generated by the SUMMA simulations, (2) a NetCDF 309 
file recording the model performance for each basin as measured by the Kling-Gupta Efficiency 310 
(KGE) (Gupta et al., 2009), and (3) additional files created by the notebooks such as the figures 311 
that visualize the model results.  312 

In the case of the CJW CG environment, after running the notebooks, all files are saved in the CJW 313 
CG and are directly accessible to the user. In the case of the HPC environment, the KGE results 314 
and other files created by the notebooks (e.g., figures) are automatically transferred to the CJW 315 
CG, but the NetCDF output files remain within the HPC environment to avoid transferring large 316 
volumes of model output (as a reminder, the size of the model output for the entire VB study was 317 
2.834 TB). 318 

However, if the user of the HPC environment wishes to transfer selected SUMMA NetCDF output 319 
files from the HPC to be directly accessible for further analysis and long-term storage, then the 320 
CyberGIS-Compute Service (Li et al., 2022) can be used for reliable high-performance large file 321 
transfers through the Globus service (Chard et al., 2016; Foster, 2011). As shown in Figure 2, data 322 
is transferred from HPC to the CJW using Globus without going through the job submission server. 323 
Globus is a software as a service that enables the transfer of datasets of any size between different 324 
storage options (personal computers, HPC, etc.) without users being required to be constantly 325 
logged in and monitoring the data transfer (Chard et al., 2016). Technically, the CyberGIS-GIS 326 
Compute acts as a Globus app client holding a community Globus account that has access to both 327 
data endpoints on the Jupyter and target HPC. When data transfer is needed, CyberGIS-Compute 328 
initiates a Globus task between the two endpoints and monitors the progress. Users are updated 329 
with data transfer status in the notebooks environment during the entire process. 330 

 331 

  332 
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2.3 Model Workflows as Jupyter Notebooks 333 

As mentioned earlier, the model workflows allow the user to reproduce all or subsets of the VB 334 
study using either the CJW CG computational resources (referred to later as CJW CG) or the HPC 335 
and CJW CG computational resources (referred to later as HPC). The CJW CG and HPC 336 
HydroShare resources can be found at Choi et al. (2022b) and Choi et al. (2022c), respectively. 337 
The model workflows are documented in three (for CJW CG) or four (for HPC) Jupyter notebooks. 338 
Table 1 shows the summary of the steps taken in each notebook, while Figure A2 - A5 show more 339 
detailed information for notebooks 1-4. The first three notebooks for both the CJW CG and HPC 340 
environments focus on (1) selecting the study basins, simulation period, and model input forcings, 341 
(2) running the SUMMA model, and (3) exploring outputs to analyze the effect of each forcing 342 
variable in each basin. The HPC computational resource uses a fourth notebook to transfer large 343 
unprocessed output data from the HPC to CJW using GLOBUS. Notebooks 1 and 3 are very 344 
similar between the two HydroShare resources, and both CJW CG and HPC HydroShare resources 345 
use CJW CG computational resources to run these two notebooks. The second notebook differs 346 
for the two environments, and the difference is explained in Section 2.3.2. These notebooks assist 347 
a modeler in analyzing CAMELS basins individually, providing information on forcings and 348 
output variables that are the most/least sensitive in their basin. With some additional work, the 349 
CJW CG computational environment can also be hosted on other (non CJW) cloud services, but 350 
the HPC environment is more tailored to interact with the CJW cloud service used here. 351 

  352 

Table 1. Overview of the notebook 1-4.  353 

# Notebook Name Goal CJW CG or HPC 

1 Preprocessing Prepares forcings, and sets study 
basins and simulation period 

Very similar between HPC 
and CJW CG environment 

2 SUMMA execution Runs the SUMMA model Different versions for HPC 
and CJW CG environment 

3 Post-processing 
Explores outputs to find out effect 

of each forcing variable in each 
basin 

Very similar between HPC 
and CJW CG environment 

4 Use Globus to transfer 
big data 

Transfer raw output from HPC to 
CJW using Globus service Only for HPC environment 

 354 
 355 

To use the HPC computational resource, the user must obtain access to the HPC by issuing a 356 
request through HydroShare to use CJW. Once this access is granted, users are automatically given 357 
free access to two alternative HPC resources: (1) the Virtual ROGER (Resourcing Open Geospatial 358 
Education and Research) HPC administered by the School of Earth, Society, and Environment at  359 
University of Illinois Urbana-Champaign (UIUC) which is integrated with the Keeling compute 360 
cluster at UIUC (“Virtual Roger User Guide,” 2022) and (2) the Expanse HPC, a much larger NSF 361 
XSEDE resource operated and managed by San Diego Supercomputer Center (SDSC) (“Expanse 362 
System Architecture,” 2022). In theory, the CyberGIS-Compute Service can support other HPCs 363 
as well, but we did not test other HPCs. In this study, among the provided HPC options, we only 364 
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used Expanse to demonstrate the cyberinfrastructure: in our initial experiments Expanse HPC 365 
performed faster  than Virtual ROGER and the goal here was to show how a HPC can scale up a 366 
study by speeding up the modeling process compared to a non-HPC environment rather than an 367 
inter-comparison between different HPCs. Users who do not wish to use HPC computational 368 
resources can use CJW CG computational resources directly to run smaller modeling jobs.  369 

The hardware specifications of the CJW CG and the Expanse HPC are compared in Table 2. The 370 
CJW CG has only 3 compute nodes each of which has eight CPUs with 1.996 GHz Clock Speed 371 
and 30 GB DRAM. Each user can only use up to six CPUs and the CPUs can be shared among 372 
users. This means the maximum degree of parallelism for simulations using this computational 373 
resource is six. Thus, in case of running one basin from the VB study (704 runs) and using all the 374 
six available CPUs, each CPU will need to run 117.33 simulations (some of them 117 and others 375 
118 simulations). The Expanse HPC has 728 AMD Rome standard compute nodes each of which 376 
is equipped with 256 GB DRAM and 128 2.25 GHz CPUs (“Expanse User Guide,” 2022). The 377 
Expanse HPC allows the user to only use up to 2 nodes at a time, i.e., 256 CPUs or the maximum 378 
degree of parallelism for simulations. Thus, if a user is running one basin from the VB study (704 379 
runs) and using all the available 256 CPUs, then each CPU will need to run 2.75 simulations (some 380 
of them 2 and others 3). This shows how the HPC resource can scale up the model runs offering a 381 
high-performance tool. More details about the run-time performance of the notebooks are 382 
discussed in the results and discussion section. 383 

 384 

 385 

 386 

Table 2. Hardware specifications of the computational environments. 387 

Computational 
Environment  

Node 
count 

Number of CPU 
cores per node (for 
parallel runs only)  

Clock Speed 
(GHz) 

DRAM/node 
(GB) 

CJW CG* 3 8 1.996 30  
Expanse HPC** 728 128 2.25 256 

*AMD EPYC-Milan Processor. Each user can only up to 6 CPUs and the CPUs can be shared 388 
among users. 389 
**AMD Rome Standard Compute Nodes. Each user can only use up to 2 nodes, which means 390 
256 CPUs, the maximum number of parallelism for simulations.  391 
 392 

The following subsections discuss the general purpose of each notebook used to reproduce parts 393 
of the VB study. For specific coding details, refer to the notebooks in the HydroShare resources 394 
at Choi et al. (2022b) and Choi et al. (2022c). 395 

2.3.1 Data processing notebook 396 
The first notebook (JN 1: Preprocessing) processes the original CAMELS SUMMA files and the 397 
input forcing datasets (Table A2). The user can select one or more CAMELS basins (1-671 basins) 398 
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but by selecting a higher number of basins the computational time and expense increases. 399 
Notebook 1 subsets the original CAMELS SUMMA files, producing SUMMA attributes, 400 
parameters, initial conditions, and hourly NLDAS forcing files for the selected basin(s). Then, 401 
additional forcing datasets for the hydrologic model sensitivity study are developed from the 402 
NLDAS data files (FORCINGS box in Figure A1) as discussed below.  403 

For each SUMMA-model setup, variations in 14 SUMMA-generated outputs, described in Table 404 
A1, are examined with respect to variations in seven input forcings (air pressure (prs), air 405 
temperature (tmp), long wave radiation (lwr), precipitation rate (ppt), specific humidity (hum), 406 
shortwave radiation (swr), and wind speed (wnd)), under different model parameterizations and 407 
configurations. The SUMMA outputs generated with the one-hour NLDAS forcing dataset are 408 
considered the benchmark (NLDAS dataset 1; FORCINGS box in Figure A1). The rest of datasets 409 
(ppt to prs datasets; FORCINGS box in Figure A1) are developed, holding each of the individual 410 
forcing variables constant over a 24-hour period while the other six forcing variables contain the 411 
original hourly NLDAS values.   412 

Figure A2 shows the steps taken in the first notebook. This notebook is the same for the CJW CG 413 
and HPC environments except that the simulation time period and basins to be explored are pre-414 
populated differently. The user can change these setups in the third step of this notebook (step 415 
1_3). In the last step of this notebook, users can visualize the individual forcing variables held 416 
constant over a 24-hour period against the original hourly NLDAS values using hourly and 417 
cumulative plots. 418 

2.3.2 SUMMA execution notebook 419 
The second notebook (JN 2: Running SUMMA) executes the SUMMA model using the input data 420 
from the first notebook for four different sets of SUMMA basin runs, outlined in Figure A1 (RUNS 421 
box) and described in detail in The VB study. The first set of basin runs (DEFAULT; 8 SUMMA 422 
runs per basin; RUNS box) uses the eight forcing datasets (FORCINGS box) combined with 423 
default parameters and a default SUMMA configuration. The SUMMA default configuration is 424 
set in the resource model decision file.    425 

The second set of basin runs (LHS; 88 SUMMA runs per basin; RUNS box in Figure A1) uses the 426 
eight forcing datasets combined with 11 parameter sets and a default SUMMA configuration. The 427 
11 parameter sets consist of the default parameter set and 10 additional parameter sets with 15 428 
commonly calibrated parameters (Table A2). As detailed in the VB study, the parameters are 429 
sampled using Latin Hypercube Sampling (LHS) over their defined range. The pyDOE LHS 430 
function (Lee, 2014) is used to create unique 10 x 15 LHS sampling matrices for the selected basin. 431 
Then the LHS matrices are used to produce 10 parameter sets of the 15 parameters while 432 
considering the parameter constraints listed in Table 2. The choice of a different seed value will 433 
lead to different LHS sets (and these sets will be different from the ones used by the VB Study).   434 

The third set of basin runs (CONFIG; 64 SUMMA runs per basin; RUNS box in Figure A1) uses 435 
the eight forcing datasets combined with the default parameter set and eight SUMMA 436 
configurations. The eight SUMMA configurations, outlined in the CONFIGURATIONS box in 437 
Figure A1, test three model decisions (stomatal resistance (stomResist), choice of snow 438 
interception parameterization (snowIncept), and choice of canopy wind profile (windPrfile) with 439 
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two options for each decision. Note the default configuration for this study is shown in bold in the 440 
CONFIGURATIONS box in Figure A1:BallBerry, lightSnow, and logBelowCanopy.  441 

The fourth set of basin runs (COMPREHENSIVE; 704 SUMMA runs per basin; RUNS box in 442 
Figure A1) includes the DEFAULT, LHS, and CONFIG basin runs, and is the only set that needs 443 
to be run to replicate a single basin sensitivity study following the VB study method (six years of 444 
simulation must be run for replication). For testing purposes, sets 1-3 can also be run by 445 
themselves. The 10 parameter set files for the basin from the LHS sampling plus the default 446 
parameters (11 parameter sets) are run each with eight SUMMA configurations 447 
(CONFIGURATIONS box in Figure A1). 448 

Figure A3 shows the steps taken in the second notebook. The first two steps in this notebook are 449 
the same for the CJW CG and HPC environments but the rest of the workflow differs. In the CJW 450 
CG notebook, the user can define the simulations by selecting the simulation period, model 451 
configuration, and/or parameter values. Depending on which run complexity choice (i.e., 452 
DEFAULT, LHS, CONFIG, COMPREHENSIVE in the RUNS box in Figure A1) is selected the 453 
notebook executes a specific set of code cells using a conditional statement logic (e.g., if user 454 
selects config_prob == 1, step 2_7 is run which leads to CONFIG runs as shown in the RUNS box 455 
in Figure A1). Users need to carefully consider the number of basins and the length of the 456 
simulation period as the CJW CG environment is not powerful enough to run large simulations in 457 
a reasonable time. In the HPC notebook, we only provided the user with the option to run the most 458 
complex problem, i.e., lhs_config_prob, as the HPC is powerful enough to run the full problem 459 
making it unnecessary to allow for simpler problems. The user can still change the simulation 460 
period (in step 2_3 of the workflow in Figure A3). The other main difference between the CJW 461 
CG and HPC notebooks is that the codes calculating KGE values for the HPC notebook are 462 
executed on the HPC (Step 2_8 in HPC branch in Figure A3) while for the CJW CG environment, 463 
the KGE values are calculated locally on CJW CG (Step 2_9 in CJW CG branch in Figure A3). In 464 
the HPC environment, the KGE values are calculated on the HPC resource to prevent having to 465 
transfer large data volumes from the HPC to the CJW CG with the sole purpose of calculating 466 
performance metrics. Users can use Globus to transfer selected output files from HPC to the CJW 467 
CG for additional analysis. Notebook 4, which exists only in the HPC environment, was developed 468 
for this purpose and is discussed in section 2.3.4. 469 

A modified and scaled (range between -1 and 1) version of the KGE was used as an indicator of 470 
model output sensitivity to a change in input forcing based on the work of Clark et al. (2021) and 471 
Mathevet et al. (2006) and is described in the VB study. The KGE test compares hourly model 472 
outputs generated with the benchmark forcing dataset (NLDAS dataset 1; Table A2) with outputs 473 
generated with the forcing datasets with one forcing held constant (CNST datasets 2-8; Table A2). 474 
KGE values are ranked from low to high to determine relative order of forcing influence on model 475 
outputs with highest rankings associated with least influence of change to 24-hour constant 476 
forcing. 477 

2.3.3 Post-processing notebook 478 
The third notebook (JN 3: Post-processing) produces visualizations of the sensitivity of SUMMA 479 
model output to the temporal resolution of the model forcing. Figure A4 shows the steps taken in 480 
the third notebook. The notebooks for CJW CG and HPC environments are the same. For the 481 
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selected basin(s), eight plots are generated with Notebook 3 that follow the analysis in the VB 482 
study. The reader is referred to the supplementary materials and the VB study for a detailed 483 
explanation of each of the eight plots. In this paper, we only present the second figure generated 484 
by Notebook 3, i.e., KGE values for each output variable for all 8 DEFAULT model runs. 485 

2.3.4 Model output transfer  486 
The fourth notebook (JN 4: Use Globus) is only included in the HPC resource (Figure A5) to 487 
transfer SUMMA output files from HPC to CJW on HydroShare. To retrieve the data from the 488 
HPC, this notebook needs a job ID submitted to the HPC and created in Notebook 2. While this 489 
notebook is running users can see the live status of the file transfer managed by the CyberGIS-490 
Compute Service. Once running of this notebook is successfully finished, the user will be able to 491 
see the location of the transferred file on CJW. 492 

2.4 Performance analysis 493 

We tested the performance of the cyberinfrastructure using a number of model scenarios, using six 494 
years of simulation (to be consistent with the VB study) and varying the number of studied basins 495 
for each computational environment, described in Table 3. For the CJW CG environment, we 496 
tested the performance of notebooks 1-3 for three scenarios (Table 3, rows 1 - 3): (1) one basin (a 497 
total of six years of simulations), (2) four basins (a total of 24 years of simulations), and (3) six 498 
basins (a total of 36 years of simulations). We decided not to test the CJW CG environment for 499 
more basins as the CJW CG runs were slow and the HPC resource was available for larger 500 
simulations. 501 

For the HPC environment, we used Expense HPC, and tested the performance of notebooks 1-3 502 
for 12 scenarios (Table 3, rows 4 - 15). In these scenarios, we varied the number of allocated CPUs 503 
(128 or 256) for parallelism and the total number of basins ranging from one basin (a total of six 504 
years of simulations) to 20 basins (a total of 120 years of simulations, which equals about three 505 
percent of the total simulation years for the whole VB study). To test the performance of Notebook 506 
4, transferring output files from HPC to the CJW, we only used scenarios HPC_256_1 to HPC_ 507 
256_6 (rows 4 - 9 in Table 3) and repeated each transfer 5 times to obtain a range of run-time for 508 
each of the scenarios. 509 

Table 3. Model scenarios for notebooks run-time performance analysis. 510 

Row Model scenario 
name  

Number of CPU 
cores allocated 

Number of 
basins 

Simulation 
years 

Total simulation 
years  

1 CJWVM_1 6 1 6 6 

2 CJWVM_2 6 4 6 24 

3 CJWVM_3 6 6 6 36 

4 HPC_256_1 256 1 6 6 

5 HPC_256_2 256 4 6 24 
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6 HPC_256_3 256 6 6 36 

7 HPC_256_4 256 10 6 60 

8 HPC_256_5 256 15 6 90 

9 HPC_256_6 256 20 6 120 

10 HPC_128_1 128 1 6 6 

11 HPC_128_2 128 4 6 24 

12 HPC_128_3 128 6 6 36 

13 HPC_128_4 128 10 6 60 

14 HPC_128_5 128 15 6 90 

15 HPC_128_6 128 20 6 120 

 511 

3 Results and Discussion 512 

In this section, we first briefly present results of the modeling case study that served as a motivating 513 
use case for the cyberinfrastructure. Then, we present results of the performance analysis focusing 514 
on contrasting the CJW CG and HPC notebooks using a variety of model setups. Then, we 515 
summarize the resulting resources from this study that are shared on HydroShare. Finally, we 516 
discuss the resulting system including opportunities and challenges identified through this research 517 
that can be the focus of future research. 518 

3.1 Results of the modeling case study  519 

Four CAMELS basins with diverse characteristics (Table 4) were chosen as examples of the effect 520 
of basin characteristics on model results. We specifically selected these four basins for this 521 
modeling case study because we found that they all show different patterns. For the four selected 522 
basins, Figure 3 shows the KGE values for each SUMMA output variable using the DEFAULT 523 
(BIL; CONFIGURATIONS box in Figure A1) model configuration runs. The runs consist of one 524 
reference simulation in which all forcing variables vary on an hourly basis (NLDAS dataset 1; 525 
FORCINGS box in Figure A1) and seven simulations in which one forcing variable is held 526 
constant at the mean daily value throughout each day (the seven datasets ppt to prs; FORCINGS 527 
box in Figure A1). KGE values were calculated relative to the reference simulation for each of the 528 
seven simulations using five years of hourly model output from 10/1/1991 - 9/30/1996. 529 

Table 4. Basin descriptions for individual basin analysis. 530 

 
USGS 
Station 

ID 

 
Name 

CAMELS Attributes 

Drainage 
area (km2) 

Gage 
datum 

(m) 

Mean daily 
precipitation 

(mm/day) 

Fraction of 
precipitation 

falling as 
Aridity 

Mean daily 
discharge 
(mm/day) 

Runoff 
ratio* 
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snow 

01632900 
Smith Creek Near New 

Market, VA 242 268 2.91 0.10 0.89 0.80 0.27 

02212600 Falling Creek near Juliette, GA  187 1202 3.37 0.01 1.19 0.74 0.22 

09378630 
Recapture Creek Near 

Blanding, UT 10 2195 1.58 0.50 0.50 0.21 0.13 

11264500 
Merced River at Happy Isles 
Bridge near Yosemite, CA 469 1228 2.64 0.91 1.15 1.94 0.73 

* Annual runoff / annual precipitation 531 

 532 
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533 
Figure 3. KGE values using the DEFAULT model runs for each CNST dataset (datasets 2-8; 534 

Table A2), grouped by SUMMA output variable. 535 

 536 

Figure 3 demonstrates the variability in model output sensitivity to the temporal resolution of the 537 
forcing variables. The first three basins (gages 01632900, 02212600, and 09378630) show a strong 538 
ppt temporal aggregation influence using DEFAULT, whereas gage 11264500 is more influenced 539 
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by tmp, hum, and swr temporal aggregation. In other words, a higher temporal resolution is 540 
necessary for the aforementioned forcing variables in the given basins to capture the sub-daily 541 
hydrologic response shown by the reference simulation. The weaker influence of ppt temporal 542 
aggregation on the gage 11264500 compared to other gages can be attributed to its high fraction 543 
of precipitation falling as snow, 0.91 as opposed to 0.1, 0.01, 0.5 (Table 4).  544 

Also in Figure 3, we see varying ranges in KGE values for particular output variables. As an 545 
example, SurfaceRunoff is affected by constant hourly values of ppt for gages 01632900 and 546 
09378630; ppt and hum for gage 02212600; and tmp, hum, swr, wnd, ppt, and prs (most to least 547 
dominant) for gage 11264500. This shows the forcing variables in each basin that need to have a 548 
higher temporal resolution to reproduce the SurfaceRunoff output in the reference simulation. In 549 
this section, we only presented one example of an inter-basin comparison to illustrate how different 550 
the results can be across different basins. Researchers can further explore the differences between 551 
individual basins using other plots that can be made using the interactive Jupyter notebooks, and 552 
also reproduce the results from the original VB study. 553 

3.2 Results from performance analysis 554 

Figure 4 shows the run-time for the data processing notebook (Notebook 1) and the post-555 
processing notebook (Notebook 3) for the 15 scenarios listed in Table 3. Notebooks 1 and 3 are 556 
very similar between CJW CG and HPC computational environments. Notebooks 1 and 3 do not 557 
take a significant time to run because they are only preprocessing and output analysis notebooks, 558 
and no simulations are run. For scenarios with fewer than 30 simulation years, Notebook 1 takes 559 
longer than Notebook 3, but this changes for scenarios with more simulation years as the rate of 560 
run-time increase with simulation years is much higher with Notebook 3 than with Notebook 1. 561 
For the CJW CG environment, the average time to run Notebooks 1 and 3 across the tested 562 
scenarios only takes 0.6% of the entire time needed to run all Notebooks 1, 2, and 3. This means 563 
the time required to run data processing and post-processing notebooks is not a limiting factor for 564 
running the simulations. For the HPC environment, this ratio increases to 8.5% and 11.3% when 565 
using 128 and 256 CPUs, respectively. This dramatic increase in the ratio is due to the significant 566 
decrease in run-time of Notebook 2 when using HPC.  567 

 568 
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 569 

Figure 4. Notebook 1 (JN1) and 3 (JN3) run-time performance analysis for different model 570 
simulations (both JN1 and JN3 were run on CJW CG no matter whether the HPC or CJW CG 571 

environment was used for the modeling; therefore, we do not distinguish between the 572 
environments in this figure). 573 

 574 

The run-time for the SUMMA execution notebook (Notebook 2) for the 15 model scenarios using 575 
different computation environments is shown in Figure 5. The high rate of run-time increase with 576 
increasing simulation years for the CJW CG environment emphasizes that while the CJW CG 577 
environment is technically able to simulate smaller models, it might not be fast enough to run 578 
larger simulations. In the case of running six basins for six years, the HPC was 3.6 and 2.6 times 579 
faster than the CJW CG, when using 256 and 128 CPUs, respectively. HPC with 256 CPUs 580 
(scenario HPC_256_6) could finish the simulations for 120 years (3% percent of the VB study) in 581 
2 hr and 10 min while HPC with 128 CPUs (scenario HPC_128_6) could run the same problem in 582 
1.48 times of the time need by HPC_256_6. Using the HPC with 256 CPUs, assuming a 583 
conservative linear extrapolation, the SUMMA simulations from Notebook 2 are expected to be 584 
done in about 75 hours for the entire VB study. In summary, HPC provides considerably faster 585 
simulations making them ideal to run for larger studies.  586 

When using the HPC resource and in the case of 120 years of simulation, dividing the number of 587 
the allocated CPUs by two led to about a 50% increase in the run-time and not 100% as one might 588 
expect. This non-linear scaling can be mainly attributed to 1) communication overhead in the 589 
computational resource that reduces scaling, and 2) the fact that some parts of the codes in 590 



 

22 

Notebook 2 did not utilize parallelism. For example, KGE values were only calculated after they 591 
were exported as NetCDF files instead of being calculated directly from the raw SUMMA output 592 
files. The rate of run-time increase for HPC with 128 CPUs is higher compared to that for HPC 593 
with 256 CPUs. This may be attributed to the communication overhead because each CPU in the 594 
case of the HPC with 128 CPUs needs to run twice as many simulations compared to HPC with 595 
256 CPUs. 596 

  597 

 598 

Figure 5. Notebook 2 run-time performance analysis for different model simulations using the 599 
CJW CG, or HPC (Expanse with 256 or 128 CPUs) options. 600 

 601 

The run-time for transferring the SUMMA output files from Expanse HPC to CJW on HydroShare 602 
using the Globus service integrated by CyberGIS-Compute Service is shown in Figure 6. Each 603 
transfer was repeated 5 times to obtain a range of run-time for each of the model simulations with 604 
a different total number of simulation years. The range of the transfer time for each total number 605 
of simulation years is small, indicating a consistent data transfer. For 120 years of simulation, it 606 
took 14.5 min on average to transfer 118 GB of data from HPC to CJW, highlighting that the data 607 
transfer approach from HPC to CJW is fast and stable. The transfer rate (GB/min) is independent 608 
of data size (Figure 6). 609 

 610 
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 611 

Figure 6. Boxplots for Notebook 4 run-time performance analysis for five different simulation 612 
years to transfer data from Expanse HPC to CJW on HydroShare. Each transfer was repeated 613 

five times to obtain a range of run-time for each of the model simulations with a different total 614 
number of simulation years.  615 

3.3 Data organization in HydroShare 616 

The data for this study was pre-processed and the output post-processed by using existing Python 617 
packages. The study demonstrates the potential for using the online repository of HydroShare to 618 
not only store data and modeling code, but to also store computational environments, API version 619 
documentation, and container installation. HydroShare, as a hydrology-based repository service, 620 
facilitated this by allowing all the parts of the problem to be stored together as one resource. 621 
Furthermore, parts of the resource can be extracted and made into a new version of the resource 622 
(updated, revised, or modified), to promote collaboration.   623 

To this point, a HydroShare collection resource was created that contained three composite 624 
resources. These resources are published and have Digital Object Identifier (DOI) which makes 625 
them immutable and findable. Figure 7 shows the landing page for the HydroShare collection 626 
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resource that groups the three composite resources. The three composite resources that are 627 
contained by this collection resource are shown in dialogue box 1, the “Related Resources” in box 628 
2 refers to this paper, and box 3 shows the information on how to cite this resource. Figure 8 shows 629 
the landing page for the HydroShare composite resource holding the HPC notebooks. Box 1 shows 630 
the contents of the resource, most importantly the four Jupyter notebooks and the readme.md file. 631 
The readme.md file (box 2) provides the user with the instructions on how to run the notebooks. 632 
Box 3 shows the information on how to cite this HydroShare resource. 633 

 634 

 635 



 

25 

 636 

Figure 7 The HydroShare landing page for the collection resource developed by this study (Choi 637 
et al., 2022a). 638 
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 639 

Figure 8 The HydroShare landing page for the HPC resource developed by this study (Choi et 640 
al., 2022c). 641 
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3.4 Opportunities and challenges 642 

This study  demonstrated a real-world working implementation application of strategies for 643 
reproducible hydrologic modeling presented by Choi et al. (2021) to a large-scale hydrologic study 644 
(the VB study). This section discusses the opportunities and challenges of this implementation. If 645 
one needs to adopt this cyberinfrastructure for studies significantly differing from the VB study, 646 
considerable changes or extra steps might be needed. For instance (1) if exploring non-CAMELS 647 
basins, then extra steps to prepare the inputs might be needed, or (2) if using hydrologic models 648 
other than SUMMA, then containerization of the model might be needed. Despite the plausible 649 
challenges when making these non-trivial extra steps, the intended main opportunity here is that 650 
the modeling community can learn from the presented open cyberinfrastructure considering the 651 
commonalities among the hydrologic models with regard to the input data, preprocessing, 652 
processing, and postprocessing steps needed by them (Knoben et al., 2022).  653 

Minimal changes in the notebooks are required to use the presented cyberinfrastructure to rerun 654 
parts or all of the VB study or to extend the experiments performed in that study for selected 655 
CAMELS basins. With these minimal changes, a user could use (1) different CAMELS basins, (2) 656 
different parameters in the LHS set, (3) different simulation periods, e.g., a drought period, (4) 657 
more than 10 LHS sets, e.g., a more thorough exploration of the parameter space, and (5) additional 658 
SUMMA model configurations. The last two changes, i.e., using a larger number of LHS sets and 659 
different model configuration/decisions, highlights a major challenge in reproducing a 660 
computationally complex study. Here, the limit on manageable data size was pushed, even when 661 
running a few basins. HPC computational power was required to run the full six years of 662 
simulation; expanding the parameter exploration space or adding model decisions would 663 
compound the data size. Thus, while this work is advancing cyberinfrastructure used for big data 664 
in hydrology, challenges remain.  665 

The second major challenge that is encountered is implementing version control. What if users 666 
need to run the Jupyter notebooks presented in this study in their own computational environment 667 
(not deployed on CJW), or they need to install a newer version of a model API? How can they 668 
make sure they have a reproducible framework that is robust enough to tackle the version control 669 
problem? Because there are many individual pieces of software, it was challenging at times for the 670 
study team to keep all the software versions synchronized. We propose that future research should 671 
tackle the version control challenge by making the computational environment all documented and 672 
installable via a Python environment file. The pySUMMA code, which is used for hydrology 673 
modeling, was installed via conda just as the rest of the infrastructure. In the future, Python 674 
package updates will break compatibility, but compatibility can be preserved by installing the older 675 
versions (as documented in the environment file), or the user understanding the updates in order 676 
to manually work around the updated package incompatibility. If a researcher wants to use a newer 677 
(future) version of pySUMMA, then they may need to debug some parts of the Jupyter notebooks 678 
that are affected by the changes. While this is not an ideal way to handle version updates, at least 679 
the researcher has options of a working, albeit older, computational environment, from which to 680 
begin reproducing the study before updating to newer software. 681 

The specifics of the environment can be placed in a Python environment.yml file that can be shared 682 
as part of the online model and data repositories, and can be installed with an installation notebook 683 
inside the repository. This can use best practice for transparency about what dependencies the 684 
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computational gateway interface notebooks need to run. The specifics of each dependency can be 685 
described in the installation notebook, so that if in the future there are issues with the availability 686 
of that dependency, then a suitable substitute can be found. Version control issues can be thus 687 
addressed through this methodology, albeit an imperfect solution depending on possible user 688 
troubleshooting. 689 

In addition to the two major challenges described above, there are two additional challenges related 690 
to the use of the HPC environments: 1) large data transfers between computational environments, 691 
online data repositories, and a user’s personal computer and 2) allowing users to execute their 692 
workflows on different HPC environments based on their use case and access to HPC 693 
environments. There may be cases, for example, where users does not want to utilize HPC 694 
resources due to financial cost concerns and need to transfer a large amount of model outputs from 695 
an HPC environment’s temporary scratch directory to a Jupyter compute environment to further 696 
analyze the data using the Jupyter compute environment. Transferring large datasets, e.g., the 697 
entire output from VB study or even the four selected basins study explored in this paper, would 698 
be slow and unreliable using standard data transfer approaches, i.e., compress data into a big 699 
package and then transfer it. In this study, we used Globus to do this data transfer which can 700 
transfer multiple individual files in parallel without a need to compress data a big package, and 701 
other related cyberinfrastructures that do not currently use Globus or a related technology could 702 
benefit from doing so. Globus is not limited to data transfers between the HPC environment and 703 
the Jupyter compute environments (CJW in the case of this study), however. In fact, it is possible 704 
that the full or a large portion of the model output can be stored on an online data repository or 705 
even on a user’s own personal computer. In either case, the online data repository or the user’s 706 
personal computer, the outputs could be downloaded using Globus if Globus is installed, and they 707 
become a Globus server. Making a user’s personal computer a Globus server may be the case that 708 
the user prefers to back up a model run not in an online data repository but at some other location. 709 
In this case, Globus could be used to connect directly with the HPC environment thereby bypassing 710 
both any Jupyter compute environments (CJW in the case of this study) as well as online data 711 
repositories (HydroShare in the case of this study) as an intermediate storage location. If the large 712 
data takes much of the space in the user’s personal computer, user may consider transferring it to 713 
external hard drives that offer larger capacity. To allow users to execute their workflows on 714 
different HPC environments, users would need to set up their own job submission service and 715 
configure the Jupyter environment (e.g., CJW) to the specific HPC environment that they have 716 
access to. Although the job submission software used in this study is open source, it is customized 717 
for the UIUC HPC used in the study, so it cannot be directly used for other HPCs. Future work 718 
could be for CJW to act as a connector to user supplied HPC environments. In this case, CJW 719 
would ask users to provide their own credentials and to their own HPC, rather than only using the 720 
UIUC HPC service. While not a simple task, standardization of job submission approaches across 721 
HPC environments makes this functionality possible. Generalizing the approach through future 722 
research could benefit users to access their own institutional HPCs and other HPCs at the national 723 
level that the user has access to. 724 

4 Conclusions 725 

The importance of reproducibility is broadly recognized across different scientific disciplines. 726 
When it comes to computational hydrology, this can be a significant challenge. This research 727 
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shows how an architecture that integrates the (1) online data repositories, (2) computational 728 
environments, and (3) model API can facilitate reproduction of the components of modern and 729 
complex hydrologic studies. For this purpose, we used a recently published large-scale hydrologic 730 
study (VB study) as an example. We designed and built cyberinfrastructure that utilized software 731 
components to enable intuitive, and online access to computational environments. This approach 732 
was used to remove the potential software inconsistencies from users’ differing personal software 733 
editions, as well as to make implementation easier with pre-compiled software, with the added 734 
complication of a computationally expensive research problem instead of a case study. This 735 
approach gave the user the option to use either the CJW CG or HPC computational environments, 736 
depending on how much they need to reproduce a problem more representative of the big-data 737 
problem. Using HydroShare as the data repository, and containerization of the pySUMMA API 738 
(with Docker or Singularity in the case of the HPC environment) along with a computational 739 
gateway interface of Jupyter notebooks both hosted on the CJW made this possible. Three Jupyter 740 
notebooks for the CJW CG environment and four Jupyter notebooks for HPC environment were 741 
developed. Notebooks 1-3 for both CJW CG and HPC environments enable, (1) preparing the 742 
forcing data, simulation period, and study CAMELS basins, (2) executing SUMMA hydrologic 743 
model, and (3) visualization of the results. Notebook 4, only developed for the HPC environment, 744 
enables transferring large data from HPC to the scientific cloud service (i.e., CJW) using Globus 745 
service integrated by CyberGIS-Compute in a reliable, high-performance and fast way. 746 

We presented a modeling case study subset from the VB study that served as a motivating use case 747 
for the cyberinfrastructure. The case study showed how four individual basins with different 748 
characteristics can lead to different patterns of temporal aggregation for each of the forcing 749 
variables given the same model setup. The case study served to show that the developed 750 
cyberinfrastructure enables others to reproduce the VB study for subsets of the original domain as 751 
a basis for doing additional research enabling conclusion-reproducibility beyond bit-752 
reproducibility. 753 

We analyzed performance of the notebooks focusing on contrasting HPC and CJW CG notebooks 754 
using a variety of model scenarios. The HPC environments could perform significantly faster 755 
simulations compared to CJW CG, enabling users to explore a large number of basins and 756 
simulation periods. This clearly showed how the use of HPC from a Jupyter gateway could advance 757 
the reproducibility of modern and complex hydrologic studies. The run-time performance analysis 758 
for the big data transfer notebook for the HPC environment showed that the method used was 759 
stable, reliable and fast. Therefore, similar studies could easily benefit from the same approach for 760 
transferring large data between scientific cloud services.  761 

With the focus of this research was on conclusion-reproducibility over bit-reproducibility of the 762 
VB study, users can easily modify the notebooks to test different situations by varying the study 763 
basins and periods, parameterizations, and model configurations. These situations highlighted two 764 
major challenges. First, the complexity of the big-data problem eventually became large enough 765 
that it needed to be run using the HPC computation environment, which presented other smaller 766 
challenges of data transfer and portability of the HPC environment. Second, implementation of a 767 
version control system was needed (e.g., when a user needs to install a newer version of a model 768 
API or when a user needs to run these codes on their local machine rather than the used cloud-769 
based computational environment). Sharing the dependencies of the computational environments 770 
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as a Python environment yml file and an installation notebook that installs them was discussed as 771 
a future solution to tackle the version control issue. 772 

Finally, as a broader impact, the VB study methodology replicated with interactive codes could 773 
also serve as a valuable educational resource, allowing educators to present sophisticated modeling 774 
experiments for use within classrooms through online Python notebooks. Likewise, the basic 775 
approach could be extended to enable new water decision-support systems that take advantage of 776 
the SUMMA framework and HPC yet remain easy to interact with through notebooks. This can 777 
help to, for example, evaluate forcing sensitivity to a water resources management objective, or 778 
explore the parameter and model uncertainties of SUMMA using different algorithms such as 779 
Markov chain Monte Carlo (MCMC), and Bayesian model averaging (BMA) (Samadi et al., 2020) 780 
in a systematic manner. With more work to harden and improve the usability of the system 781 
presented here, these additional use cases can be possible.  782 
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Appendix. 792 

This section provides supplemental material to support our methods and results. The figures and 793 
tables are referred to in the main text.  794 

 795 

 796 

Figure A1. An overview of the forcing datasets (FORCINGS; yellow box), parameter sets 797 
(PARAMETERS; blue box), and model configurations (CONFIGURATIONS; green box) used 798 

in the 704 SUMMA model runs (RUNS; pink box) performed for each of the 671 CAMELS 799 
basins. Note the pink numbers that follow each forcing, parameter, and configuration refers to 800 
the SUMMA model run set as numbered in the pink RUNS box (e.g., the Default parameter set 801 
in the PARAMETERS box is used with SUMMA model runs 1, 2, 3 and 4 in the RUNS box) 802 

(source: modified from Van Beusekom et al., 2022). 803 

 804 



 

32 

 805 

Figure A2. The preprocessing notebook (JN1) diagram. 806 
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 807 

Figure A3. Running SUMMA notebook (JN2) diagram. 808 

 809 
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 810 

Figure A4. Post-processing notebook (JN3) diagram. 811 

 812 
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 813 

Figure A5. HPC Data transfer notebook (JN4) diagram. 814 

 815 
Table A1. SUMMA output variables chosen for analysis (source: Van Beusekom et al., 2022). 816 

# Variable Type SUMMA Variable Name Description (units) 
1 

liquid water fluxes 
for the soil domain 

SurfaceRunoff surface runoff (m s-1) 
2 AquiferBaseflow baseflow from the aquifer (m s-1) 
3 Infiltration infiltration of water into the soil profile (m s-1) 
4 RainPlusMelt rain plus melt (m s-1) 
5 SoilDrainage drainage from the bottom of the soil profile (m s-1) 

6 
turbulent heat 

transfer 

LatHeatTotal latent heat from the canopy air space to the atmosphere (W m-2) 

7 SenHeatTotal sensible heat from the canopy air space to the atmosphere (W m-2) 
8 SnowSublimation snow sublimation/frost (below canopy or non-vegetated) (kg m-2 s-1) 
9 snow SWE  snow water equivalent (kg m-2) 

10 vegetation CanopyWat mass of total water on the vegetation canopy (kg m-2) 
11 

derived  

NetRadiation net radiation (W m-2) 
12 TotalET total evapotranspiration (kg m-2 s-1) 
13 TotalRunoff  total runoff (m s-1) 
14 TotalSoilWat  total mass of water in the soil (kg m-2) 

 817 
 818 
 819 
 820 
 821 
 822 
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Table A2. Parameters chosen for Latin Hypercube Sampling (source Van Beusekom et al., 823 
2022).  824 

Parameter Name Minimum Maximum Default Constraints  

k_macropore 1.0d-7 0.1 0.0001  

k_soil 1.0d-7 1.0d-5 variable  

theta_sat 0.3 0.6 variable 
> critSoilTranspire; > fieldCapacity;  

> theta_res 

aquiferBaseflowExp 1 10 2.0  

aquiferBaseflowRate 0 0.1 0.1  

qSurfScale 1 100 50  

summerLAI 0.01 10 3  

frozenPrecipMultip 0.5 1.5 1  

heightCanopyTop 0.05 100 variable > heightCanopyBottom 

heightCanopyBottom 0 5 variable  

routingGammaShape 2 3 2.5  

routingGammaScale 1 100000 20000  

albedoRefresh 1 10 1.0  

tempCritRain 272.16 274.16 273.16  

windReductionParam 0 1 0.28  
 825 

 The eight plots generated by Notebook 3 are described as follows: 826 

1. Location of the selected CAMELS basin.  827 
2. KGE values for each CNST forcing dataset (datasets 2-8; Table A2) by output variable 828 

using the DEFAULT model runs. This is a subset of Figure 9A from Van Beusekom et al. 829 
(2022) *. 830 

3. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, 831 
LHS, CONFIG, and COMPREHENSIVE; Table A1) by output variable. Note, boxplots 832 
only appear for the model runs selected in Notebook 2.  This is a subset of Figure 9B from 833 
Van Beusekom et al. (2022). 834 

4. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, 835 
LHS, CONFIG, COMPREHENSIVE; Table A1) by CNST forcing dataset (datasets 2-8; 836 
Table A2). Note, boxplots only appear for the model runs executed in Notebook 2.  This is 837 
a subset of Figure 9C from Van Beusekom et al. (2022). 838 

5. Ranks 1 - 7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing 839 
dataset (datasets 2-8; Table A2) for the 14 SUMMA output variables. Note, bars on this 840 
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plot will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. 841 
This is a subset of Figure 8 from Van Beusekom et al. (2022). 842 

6. Ranks 1 - 7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing 843 
dataset (datasets 2-8; Table A2) for the eight SUMMA configurations.  Note, the complete 844 
figure will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. 845 
A stacked bar for the default configuration (BlL) will be plotted if the LHS basin runs are 846 
executed in Notebook 2. This is a subset of Figure 8 from Van Beusekom et al. (2022). 847 

7. Boxplots for each output variable depicting the range in the seven-summed KGE values 848 
(from CNST forcing datasets 2-8) for the eight SUMMA configurations, or for the default 849 
configuration if only the default configuration was run (DEFAULT or LHS basin runs in 850 
Notebook 2. This is a subset of Figure 6 from Van Beusekom et al. (2022). 851 

8. Boxplots depicting the range in the summed SUMMA hourly output variables over the 852 
period of record produced using the benchmark (NLDAS) forcing dataset for the eight 853 
SUMMA configuration, or for the default configuration if only the default configuration 854 
was run (DEFAULT or LHS basin runs in Notebook 2). Note, a point will appear instead 855 
of a boxplot if only the default parameter set was run (DEFAULT or CONFIG basin runs 856 
in Notebook 2). This analysis is not in Van Beusekom et al. (2022); it is included in the 857 
interactive tool to supply users with potential SUMMA output variable ranges for their 858 
selected basin.  859 
* To reproduce the modeling case study presented in the current paper, the selected four 860 
basins need to be specified in Notebook 1 (Figure A2, “Step 1_3_2 Select basins and 861 
simulation period”) and then Notebook 3 can be used to reproduce Figure 3 (KGE values 862 
using the DEFAULT model runs for each CNST dataset (datasets 2-8; Table A2), grouped 863 
by SUMMA output variable) 864 
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