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ABSTRACT4

Watershed modeling requires accurate estimates of precipitation, however in some cases5

it is necessary to simulate streamflow in a watershed for which there is no precipitation gauge6

records within close proximity to the watershed. For such cases, we propose an approach for7

estimating watershed-scale precipitation by combining (or fusing) gauge-based precipitation8

time series with radar-based precipitation time series in a way that seeks to match input9

precipitation for the watershed model with observed streamflow at the watershed outlet.10

We test the proposed data fusion approach through a case study where the Soil and Water11

Assessment Tool (SWAT) model is used to simulate streamflow for a portion of the Eno12

River Watershed located in Orange County, North Carolina. Results of this case study show13

that the proposed approach improved model accuracy (E = 0.60; R2 = 0.74; PB = -10.2)14

when compared to a model driven by gauge data only (E = 0.50; R2 = 0.54; PB = -25.5)15

or radar data only (E = 0.33; R2 = 0.61; PB = -13.7). While this result is limited to a16

single watershed case study, it suggests that the proposed approach could be a useful tool17

for hydrologic engineers in need of retrospective precipitation estimates for watersheds that18

suffer from inadequate gauge coverage.19
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INTRODUCTION21

There are many challenges associated with applying watershed models to water quantity22

and quality problems (Singh and Woolhiser, 2002). One of the most basic challenges is23

obtaining accurate input data for running the model, and one of the most important input24

datasets required to run a watershed model is precipitation (Biemans et al., 2009). Two25

common approaches for estimating precipitation for use in watershed modeling are (1) as26

observations made at gauging stations that typically use a tipping bucket instrument to27

capture rainfall intensity and (2) as estimates derived from radar which, in general, relate28

a reflectivity factor obtained from backscattered power of the echo returns to precipitation29

intensity (e.g., Hitschfeld and Bordan, 1954; Lakshmanan et al., 2007). When watershed30

models are used in engineering practice, it is sometimes the case that there is a lack of31

representative precipitation gauges for a watershed, and low confidence in the accuracy of32

radar-based precipitation estimates (Wilson and Brandes, 1979; Droegemeier et al., 2000;33

Young et al., 2000; Krajewski et al., 2010). The goal of this research is to build from well34

established idea that watershed-scale precipitation can be better estimated by combining35

gauge and radar-based precipitation estimates (Hildebrand et al., 1979; Smith and Krajewski,36

1991; Legates, 2000) by testing an approach for fusing gauge and radar-based precipitation37

time series based on informational content within the watershed stream discharge record.38

Our motivation for the proposed approach is that both gauge and radar-based methods39

for estimating precipitation have strengths and weaknesses. For example, there are gauge40

measurement errors associated with wind effects, wetting losses when emptying the collector,41

and evaporation and splashing during the storm events (Legates and DeLiberty, 1993; Grois-42

man and Legates, 1995). Likewise, there are radar measurement errors including reflectivity43

errors from beam blockage, ground clutter, beam broadening with range, and bright-band44

contamination (Droegemeier et al., 2000). After taking these measurement errors into ac-45

count, precipitation measurements at gauging locations tend to be more accurate than radar46

based estimates. This is because gauges directly measure precipitation using a tipping bucket47
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or similar instrument, whereas radar-based systems indirectly estimate precipitation rates48

based on reflectivity of hydro-meteors (e.g. rain and hail). However, precipitation estimates49

from radar have the advantage that they capture the spatial variability and provide a more50

complete spatial coverage of the storm event.51

In watershed management applications, available gauge data may be physically located52

miles away from the watershed being modeled, and this decreases the likelihood that the53

gauges capture the actual precipitation falling within the watershed. Therefore while gagued54

data may be preferred, it is not always available to support a watershed model. Even if55

nearby gagued data is available, there is evidence that different storm events (e.g., convective,56

frontal, etc.) may be best captured by different measuring approaches. Many studies have57

shown this to be the case, with some of the earliest studies being Huff (1970) who showed58

that warm season storm events in Illinois required additional rain gauges in order to capture59

spatial variability during such events, and Hildebrand et al. (1979) who showed that for low60

gauge densities, gauge-corrected radar precipitation estimates may be more accurate than61

gage-only measurements for convective storm events. More recently, Olivera et al. (2008)62

showed through an analysis of Areal Reduction Factors (ARF) in Texas that storms have63

different orientations during different seasons, and the authors attributed this finding to64

different mechanisms for generating precipitation (fronts vs convection) that are prevalent65

during different seasons.66

Previous studies in radar based precipitation estimates have focused primarily on in-67

creasing the accuracy of radar generated precipitation estimates by using observed precipi-68

tation and streamflow data. Recent work has included an approach by Tuppad et al. (2010)69

that used a Soil and Water Assessment Tool (SWAT) model to adjust Next Generation70

Weather Radar (NEXRAD) Stage III data for the Smoky Hill River/Kanopoilis Lake wa-71

tershed based on observed streamflow. The results show that NEXRAD Stage III data72

overestimated precipitation during warm months and underestimated precipitation during73

cold months compared to gauge estimated precipitation data. Smith and Krajewski (1991)74
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developed a procedure to estimate the mean field bias of radar precipitation estimates based75

on precipitation gauge and NEXRAD data. They applied their method to an area in Nor-76

man, Oklahoma for a storm on May 27, 1987 that caused flood damage and found that the77

correlation between radar and gage data ranged from 0.71 to 0.96.78

Legates (2000) similarly introduced a procedure to calibrate NEXRAD estimations in79

real-time using gauge precipitation observations and illustrated the procedure with a storm80

event on the Southern Great Plains. The study show that the NEXRAD precipitation esti-81

mates represented spatial distribution much better than spatially interpolated gauge precip-82

itation. Jayakrishnan et al. (2004) compared the multi-sensor estimated hourly NEXRAD83

precipitation data with 545 rain gauges for a five year time period over the Texas-Gulf basin.84

The study showed that radar data generally underestimated the precipitation compare to85

the rain gauges, and the performance of radar data varied greatly both spatially and tem-86

porary. However, this study was conducted over the period 1995-1999 and a correction of87

the NEXRAD precipitation processing reported by Fulton et al. (2003) was incorporated in88

2003, which is before our study period.89

Our study builds on this prior work, but is different in that we assume the precipitation90

falling over a watershed during the course of a year will be better captured for some events91

by a gauge and for other events by a radar. This approach is justified by the uncertainty92

of both methods for measuring precipitation, particularly when precipitation gauges are not93

located within the watershed being modeled. Therefore, we are not performing a gauge-94

correction of the radar data, but instead proposing an algorithm for fusing the gauge and95

radar-based precipitation time series by selecting from one of the two sources for any given96

day to better capture watershed-scale precipitation. The radar data used in this study is, in97

fact, a radar product where the radar-based estimates are adjusted to match precipitation98

observations with gauge precipitation estimates because they considered to be the “ground99

truth” (Lawrence et al., 2003).100

In this study we test an approach for combining gauge and radar-derived precipitation101
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time series. The approach makes use of the idea that the true precipitation for a given102

day is reflected in the observed streamflow for that day. Therefore, the approach assumes103

that the time of concentration for the watershed is less than a day and there is higher104

confidence placed on the streamflow record than on the precipitation estimates. We test if105

combined dataset improves precipitation estimates by capturing storm events that may have106

been missed by one of the observational approaches, but captured by the other observation107

approach.108

METHODS AND MATERIALS109

Our general methodology was to apply the 2005 version of the Soil Water & Assessment110

Tool (SWAT) watershed model to simulate daily streamflow over a six year period for the111

Eno Watershed in North Carolina driven by three different precipitation input datasets:112

gauge, radar, and combined. The predicted streamflow obtained for each of these three113

precipitation cases was compared to observed streamflow at the watershed outlet in order114

to quantify the effectiveness of each precipitation dataset for estimating streamflow. The115

following subsections provide details of the methods and materials used in this study.116

Study Area117

The Eno Watershed is near the city of Hillsborough in Orange County, North Carolina118

(Figure 1) and has a drainage area of 171 km2 with gently rolling topography and a mild,119

four-season climate. The Eno Watershed is a typical rural watershed that is large enough to120

take advantage of radar precipitation estimates, but small enough not to introduce significant121

computational challenges, particularly with model calibration.122

Data Preparation123

Terrain data for the Eno Watershed were obtained from the National Elevation Dataset124

(NED) (Figure 2). The NED provides Digital Elevation Models (DEMs) at three spatial125

scales: 1 arc second (≈ 30 m), 1/3 arc second (≈ 10 m), and 1/9 arc second (≈ 3 m). The126

1/9 arc second DEM provided an incomplete coverage of the entire watershed area, therefore127
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the 1/3 arc second DEM was used for this study. According to the NED, the elevation within128

the Eno Watershed ranges from 149 m to 261 m with an average elevation of 200 m above129

sea level. The terrain slope in the watershed ranges from 0 to 153% with an average slope130

of 5.9%.131

Land cover data for the Eno Watershed were obtained from the National Land Cover132

Dataset (NLCD) (Figure 2). The NLCD is available for three different years: 1992, 2001,133

and 2006. Each of these land use maps has a 30 m spatial resolution. We elected to use134

the NLCD 2006 land use map because it was nearest to the study period. This dataset135

shows that forest, pasture lands, and developed area (mostly open space) dominate the136

watershed covering 55.5%, 24.5%, and 11.6% of the watershed, respectively. Open water,137

scrub, grassland, and cultivated crops each cover about 2% of the watershed.138

Soil data for the Eno Watershed were obtained from the State Soil Geographic (STATSGO)139

dataset. Although there is the higher resolution SSURGO data available for much of the140

United States, it was not available in a spatial data format for Orange County, NC at the141

time of the study. Soil types in the study area are named with Map Unit Identifier (MUID)142

as NC061, NC062, NC082 and NC083, and these types represent 67.2, 8.4, 20, and 4.4% of143

the watershed, respectively. These data indicate that the first 30 cm of soil consists of either144

silt loam or sandy loam over the watershed area, while deeper layers also contain clay. The145

NC061, NC062 and NC082 soil groups are hydrologic group B soils and the NC083 soil is a146

hydrologic group C soil.147

Weather observations including temperature, wind speed, humidity, and precipitation148

were obtained from the National Climatic Data Center (NCDC). Figure 1 provides the149

location of the five nearest weather stations and shows that none of the stations are located150

within the watershed boundary. Again, the fact that none of the gauges are within the151

watershed boundary is one of the challenges addressed by this study. Based on these data,152

we found that the average daily maximum and minimum air temperature were 22.4 ◦C and 9.7153

◦C, respectively, while the humidity and wind speed were 62% and 1.60 m/s, respectively, over154
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the period 2005-2010. Based on the gauged precipitation data, the daily average precipitation155

was 3.14 mm.156

Radar-based precipitation estimates from the NEXRAD program were downloaded from157

the National Weather Service (NWS) website (http://water.weather.gov/precip/download.158

php). The radar daily precipitation data were available in a shapefile format as the National159

Hydrologic Rainfall Analysis Project (HRAP) grid cells (Figure 1). The spatial resolution160

of the dataset is 4 km and the data are available from 2005 to present. This radar precipita-161

tion data produced by the NEXRAD program uses the Multi-sensor Precipitation Estimator162

(MPE) (Lawrence et al., 2003). Based on radar data, the daily average precipitation was163

2.69 mm, 0.45 mm less than the gauged data, over the period of analysis.164

Finally, the USGS has maintained a streamflow gauge on the Eno River near Hillsborough,165

NC since October of 1972 and we obtained this streamflow time series for use in the modeling166

activities. Based on these records, daily average streamflow at the outlet of the watershed167

is 1.08 m3/s over the period of study.168

Model Setup169

To create the SWAT model, we used the ArcSWAT extension to subdivide the Eno Wa-170

tershed into 15 subbasins, which were then subdivided further into 130 Hydrologic Response171

Units (HRUs). ArcSWAT uses terrain processing tools in GIS such as flow direction and flow172

accumulation to determine subbasin areas from the Digital Elevation Model (DEM). Sub-173

basin outlet points for the Eno Watershed were selected based on the size and heterogeneity174

of the land surface within the watershed. The resulting size of subbasins ranged from 8.02175

to 15.8 km2 with an average size of 11.4 km2.176

Each subbasin was further subdivided into HRUs that represent homogeneous areas177

within a subbasin in terms of the land use, soil type, and slope within that subbasin. While178

HRUs are not spatially defined within the SWAT model, they provide a means for capturing179

subbasin variability of soil type, terrain slope and land use types. The process of defining180

HRUs was done by defining thresholds for each land use, soil, and slope so that areas within181
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those threshold values can be lumped into a single HRU within a given subbasin. The SWAT182

documentation recommends between 1 and 10 HRUs be used per subbasin, so to be within183

the recommended range, we set threshold values of 10% for land use and soil type, and a184

value of 20% for slope.185

The resulting simplified land use map used in the model included only the dominated186

land use types within the watershed: deciduous forest, hay, evergreen forest, low density and187

medium density residential area. The resulting soil map was not altered by the threshold188

value, likely because we used the coarser STATSGO soil map. While we could have selected189

alternative thresholds for selecting HRUs, previous SWAT studies have shown that the num-190

ber of HRUs does not have a significant effect on hydrologic predictions but could impact191

water quality predictions (e.g., Jha et al. 2004; Arabi et al. 2006; Migliaccio and Chaubey192

2008). We therefore do not expect our particular HRU classification scheme to significantly193

impact the results of this study.194

SWAT provides two methods for estimating surface runoff: the Natural Resource Con-195

servation Service (NRCS) Curve Number (CN) method (Kenneth, 1972) and the Green &196

Ampt infiltration method (Green and Ampt, 1911). The NRCS CN method was chosen for197

this study because we judged it to be an acceptable approach for simulating a watershed of198

this size and type on a daily time step, and because most of large-scale models still use NRCS199

CN method (Arnold et al., 2010). SWAT also provides three methods to calculate potential200

evapotranspiration (PET): the Penman-Monteith method (Allen, 1986; Allen et al., 1989;201

Neitsch et al., 2005), the Priestley-Taylor method (Priestley and Taylor, 1972) and the Har-202

greaves method (Hargreaves and Samani, 1985). The Penman-Monteith method was chosen203

because it considers factors such as land cover and wind speed, which the other two methods204

ignore. SWAT allows for two channel routing approaches: Muskingum method or the vari-205

able storage method. The variable storage routing method was used in this model because206

we judged it to be an acceptable approach for the size and complexity of the watershed.207
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Model Simulations208

The Eno watershed model was used to simulate daily averaged streamflow on a daily209

simulation time step using three different precipitation input datasets: combined, gauge, and210

radar-based estimates. The SWAT Weather Generator was used to spin-up the model during211

the period 2002-2004 in order to establish initial conditions such as antecedent soil moisture212

conditions. We calibrated the model individually for each of the three input precipitation213

datasets during the period 2005-2007 and then used the streamflow record from 2008-2010214

to validate each model. All input datasets for the watershed model were held constant so215

that only the precipitation input and resulting calibration parameters were allowed to vary.216

Additional detail for the three model simulations, including a description of how the three217

input precipitation time series were created, follows.218

Gauged Precipitation Case: The five nearest gauges to the watershed (shown in Fig-219

ure 1), all within 18 km of the watershed boundary, were included in the analysis. Ordinary220

Kriging (OK) spatial interpolation was used to estimate subbasin precipitation from the221

gauged observations. We selected OK as the spatial interpolation method based on work222

reported by Goovaerts (2000) that concluded OK is more robust for precipitation estimation223

compared to other interpolation methods including Inverse Distance Weighting and Thiessen224

polygons.225

Radar Precipitation Case: The precipitation data in 4 km radar grid cells were226

rescaled to subbasin averages using an Areal Weighting (AW) spatial interpolation. This227

method keeps the radar grid cells as areal averages and performs a weighted average of228

precipitation values for subbasins based on the proportion of the radar grid cells that intersect229

the subbasin area.230

Combined Precipitation Case: The gauged and radar precipitation case time se-231

ries were combined into a new time series using the following algorithm. The combined232

precipitation value for day i and subbasin j (Pc,i,j) was selected using the condition233
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Pc,i,j =


Pg,i,j if |qi − pg,i,j| ≤ |qi − pr,i,j|

Pr,i,j else

(1)

where Pg,i,j and Pr,i,j are the gauge and radar precipitations, respectively, for day i and234

interpolated (using OK and AW methods, respectively) to subbasin j. The terms qi, pg,i,j,235

and pr,i,j represent a percent difference between an observed value on day i and an average236

term. These terms are calculated as237

qi =
Qm,i −Qm,i

Qm,i

(2)

238

pg,i,j =
Pg,i,j − Pg,i,j

Pg,i,j

(3)

239

pr,i,j =
Pr,i,j − Pr,i,j

Pr,i,j

(4)

where Qm,i is the measured streamflow at the outlet of the watershed for day i. The terms240

Qm,i, Pg,i,j, and Pr,i,j are average terms that take into account three time windows around241

the the observation recorded on day i: the average of all observations taken within the same242

month and year, observations taken within the same year, and all observations within the243

study period. These three time window averages are then averaged themselves as244

Qm,i = (1/3)
((

Qm

)
Year-Month(i)

+
(
Qm

)
Year(i)

+ Qm

)
(5)

245

Pg,i,j = (1/3)
((

Pg,j

)
Year-Month(i)

+
(
Pg,j

)
Year(i)

+ Pg,j

)
(6)

246

Pr,i,j = (1/3)
((

Pr,j

)
Year-Month(i)

+
(
Pr,j

)
Year(i)

+ Pr,j

)
(7)

where the terms Year-Month(i) and Year(i) represent the month of the year and the year for247

day i, respectively. Using Equation 1, the combined precipitation time series for subbasin j248

is calculated as Pc,j = [Pc,i=1,j, Pc,i=2,j, ..., Pc,i=n,j] where n is the total number of values in the249

time series. This procedure is then repeated for all subbasins in the watershed (j = 1, 2, ...m)250
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where m is the total number of subbasins.251

The approach can be explained by the following example. Suppose that the precipitation252

is observed using radar on March 14, 2005 and interpolated to one of the watershed subbasins.253

This observation would be represented by Pr,i,j in our nomenclature where r stands for radar,254

i is March 14, 2005, and j is the subbasin identifier. First the term Pr,i,j would be calculated255

using Equation 7. In Equation 7, the term
(
Pr,j

)
Year-Month(i)

would be the average of all256

precipitation observations taken by radar and interpolated to subbasin j during the month257

of March, 2005; the term
(
Pr,j

)
Year(i)

would be the average of all precipitation observations258

taken by radar and interpolated to subbasin j during the year 2005; lastly, the term Pr,j259

would be the average of all precipitation observations taken by radar and interpolated to260

subbasin j over the period of the study. Next Equation 4 would be used to quantify a percent261

difference between the observation on March 14, 2005 and the average term (Pr,i,j) that takes262

into account monthly, annual, and long term averages. These calculations are repeated for263

the gauge precipitation observations and the streamflow observations. Finally Equation 1264

is used to select either the gauge or the radar precipitation observation for March 14, 2005265

based on whether the gauge or radar percent difference term is closer to the streamflow266

ranking for that day.267

After completing this analysis for the Eno Watershed, the resulting combined precipi-268

tation dataset for all subbasins and all time steps (Pc) included 32,865 values. Of these269

values, 10,190 (or 31%) came from the gauge precipitation time series (Pg) and 5,513 (or270

17%) came from the radar precipitation time series (Pr) and the remaining gauge and radar271

precipitation values are equal. Although the algorithm took most of the precipitation values272

from the gauge estimates, the resulting time series, when averaged over all time steps for273

each subbasin, is closer to radar precipitation estimates (Figure 3). Figure 3 also shows that274

radar precipitation estimates tend to be lower than gauge precipitation estimates, as we saw275

with the daily averaged calculations reported earlier in this paper.276

It should be noted that this method does not account for solid precipitation (e.g. snow,277
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hail, sleet) because it was not required for this particular study watershed, which has a278

mild climate. Examination of the precipitation record showed only 6 recordings of snow not279

melting on the same day that it fell across all 5 gauges in the study region, which suggests that280

solid precipitation is not significant in this watershed. We believe that incorporating solid281

precipitation into this method is possible, however, by accounting for snowmelt processes282

and therefore lags between precipitation and streamflow.283

Model Calibration284

Each model scenario (gauge, radar and combined precipitation) was separately calibrated285

using two algorithms: the Shuffled Complex Evolution algorithm (SEA-UA) (Sahu and Gu,286

2009) and the Dynamically Dimensioned Search (DDS) calibration method (Tolson and287

Shoemaker, 2007). The SEA-UA algorithm is capable of efficiently and effectively identifying288

the optimal values for the model parameters (Duan et al., 1992) and has been successfully289

applied for estimating SWAT model parameters (Eckhardt and Arnold 2001; van Griensven290

et al. 2002). The Dynamically Dimensioned Search (DDS) calibration method (Tolson and291

Shoemaker, 2007) was also used to confirm the calibrated parameter values. The parameters292

used in the calibration were the initial NRCS runoff curve number for moisture condition II293

(Cn2), the soil evaporation compensation factor (Esco), the available water capacity of the294

soil layers (SolAwc) and the surface runoff lag coefficient (Surlag). These parameters are the295

most commonly used calibration parameters for SWAT modeling applications (Arnold et al.296

2010; Gassman et al. 2007).297

Model Evaluation298

There are a variety of approaches for quantifying the effectiveness of a watershed model. A299

widely used approach (McCuen et al., 2006) commonly used in SWAT applications (Gassman300

et al., 2007) is the Nash-Sutcliffe Coefficient (E) (Nash and Sutcliffe, 1970). According to301

Nash and Sutcliffe (1970), model efficiency can be calculated as302

E = 1−
∑n

i=1(Qm,i −Qp,i)
2∑n

i=1(Qm,i −Qm)2
(8)
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where Qm,i is the measured streamflow at the outlet of the watershed for day i, Qp,i is the303

predicted streamflow at the outlet of the watershed for day i, and Qm is the average of the304

measured streamflows. E values range from negative infinity to unity and, as the value of305

E approaches unity, the model efficiency increases such that when E = 1, the predicted306

streamflow perfectly matches the measured streamflow.307

A second approach is to use a coefficient of determination (R2), which measures the308

amount of variation of the simulated streamflow that is explained by variation in the observed309

streamflow (Santhi et al., 2006). The coefficient of determination (R2) is calculated as310

R2 =

 n
∑

QpQm − (
∑

Qp)(
∑

Qm)√
n
∑

Q2
p − (

∑
Qp)2

√
n
∑

Q2
m − (

∑
Qm)2

2

(9)

where n is the number of days and the summations are over all observations in the time series.311

R2 values range from zero to unity and, as the value of R2 approaches unity, the model is312

able to explain more of the variability present within the observed streamflow dataset.313

A third approach is the Percent Bias (PB) calculated as314

PB =
Qm −Qp

Qm

(10)

where Qp is the predicted average streamflow and Qm is the measured average streamflow,315

as indicated before. As the value of PB approaches zero, the model becomes less biased316

in terms of either over or under predicting streamflow. A negative PB value indicates that317

the predicted streamflow overestimates the measured streamflow, while a positive PB value318

indicates that the predicted streamflow underestimates the measured streamflow. We used319

each of these statistics as means for evaluating the model results driven by the different320

precipitation input datasets.321

RESULTS AND DISCUSSION322
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Model Calibration and Evaluation Results323

The changes in model parameter values resulting from calibration are given in Table324

1. These parameters were assigned initial values based on input terrain, soil, and land use325

datasets and the two calibration routines described in the Model Calibration section were326

used to identify optimal model parameters within an acceptable range of values in order327

to best match observed streamflow. Changes in the Cn2 and SolAwc parameters from their328

original estimates are expressed in absolute percent differences, while changes in the Esco and329

Surlag parameters are expressed in absolute values. The Range column in Table 1 indicates330

the constraints placed on the parameters during the calibration process. These constraints331

limit the resulting parameter values to a range that is physically meaningful.332

The calibration process resulted in an increase in the Cn2 parameter from its initial value333

for all three models. The Cn2 parameter controls the partitioning of precipitation between334

runoff and infiltration, therefore an increase in this parameter results in an increase in runoff.335

The higher Cn2 value for the radar case may be due to the fact that radar precipitation is336

generally lower than gauge precipitation estimates. The Esco parameter, which controls soil337

water evaporation, was set to a low value for all the three cases. The SolAwc parameter,338

which controls the available water capacity in the soil for use by plants, showed the greatest339

difference between radar and the other two models. Calibration of the combined case resulted340

in a slightly lower SolAwc value compare to gauge case. We investigated if the evaporation341

estimates resulted in unrealistic values by comparing the estimates with those derived from342

remote sensing imagery (Mu et al., 2007, 2011), but concluded that the evaporation estimates343

from all models were within a reasonable range. Lastly, calibration of the Surlag parameter,344

which controls storage within the watershed, resulted in nearly identical values for all three345

models.346

Statistical summaries of the streamflow predictions compared to observations using the347

approaches described in the Model Evaluation section (Table 2) provide a quantitative means348

for judging the accuracy of the models. The statistics between daily observed and simulated349
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streamflow for the three models are shown in Table 2 for the calibration and evaluation350

periods. During the calibration period, the combined case produced the highest E and351

R2 values, suggesting that this model was best able to predict streamflow. The combined352

method, however, had only the second best PB value during the calibration period. The353

PB suggested that the model tended to underpredict observed streamflow on average during354

this time period. During the evaluation period, the combined method performed the best as355

judged by the all three statistics.356

Based on evaluations of watershed models presented in Moriasi et al. (2007), the combined357

model would be classified as “good” during the calibration period and “satisfactory” during358

the evaluation period. However, this classification scheme was designed for E values based on359

a watershed model calibrated to estimate monthly streamflows. Our E values are based on360

daily predictions with a model calibrated for daily streamflow. Past SWAT studies show that361

estimated daily statistics are lower than monthly statistics (Gassman et al. 2007), therefore362

the model classification would likely improve if we used monthly E values generated by a363

monthly rather than a daily calibration.364

We tested if differences in the predicted streamflow between the combined case and the365

gauge and radar cases were statistically significant using a two-tailed t-test. We found that366

differences between gauge vs. combined and radar vs. combined were significant with a367

95% confidence interval for the calibration period. For the evaluation period, the differences368

between gauge vs. combined were significant, but the differences between combined vs.369

radar were not significant at a 95% confidence interval. Because the majority of values in370

the combined dataset came from the gauge time series, this result may be the result of371

the combined method selecting radar precipitation for larger streamflow events during the372

evaluation period.373

We tested the impact of wet and dry periods on the model calibration by reversing the374

calibration and evaluation periods (calibrating on 2008-2010 and validating on 2005-2007).375

We did this because the period 2005-2007 was drier than the period 2008-2010 and we wanted376
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to test if the combined method still performed best when calibrated over a wet instead of a377

dry period. The results of this analysis were that the combined method still performed the378

best as judged by the evaluation statistics. In fact, there were no significant changes in the379

evaluation statistics across all three models after making this change. This result supports380

our finding that the combined method performs best at estimating precipitation, even if the381

model is calibrated over a wet rather than a dry period.382

We also tested the sensitivity of our findings to the particular model parameters chosen383

for the model runs. This was done by using constant parameter sets across all three model384

simulations. We did this using two different parameter sets: (1) the uncalibrated parameter385

set and (2) the calibrated parameter set obtained from the model driven by only gauge386

observed precipitation values. Both cases resulted again in the same ordering of goodness-387

of-fit for the three model scenarios. This test suggests that study findings are independent388

of the particular model parameters chosen for the model scenarios.389

Streamflow Predictions390

Comparing daily observed and modeled streamflow for two different years, one during the391

model calibration period (Figure 4) and the other during the model evaluation period (Figure392

5), provides a visual means for judging model accuracy. Figure 4 shows that the model was393

generally able to reproduce observed streamflow for all three input precipitation datasets394

during the calibration period. Notable difference between the gauge and radar predictions395

include summertime precipitation events that produced streamflow and were observed by the396

radar but not by the gauge. These events suggest that radar may be better able to capture397

summertime convective storms. During fall months, the gauge case seemed to overestimate398

streamflow peaks when compared to the radar case. During winter months, the radar case399

produced streamflow estimates that matched well with observed streamflow but the gauge400

case overestimated the observed baseflow conditions. Finaly, during spring months, the401

gauge case matched well with observed streamflow but the radar case underestimated the402

observed baseflow conditions. These results suggest seasonal trends in the accuracy of the403
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gauge and radar-based precipitation estimates.404

The combined case improved on both the gauge and radar cases by selecting the opti-405

mal precipitation from these two datasets to best match observed streamflow. For example,406

the summertime storms observed by the radar but not by the precipitation gauges were407

correctly identified and incorporated into the combined dataset. In some cases (e.g., the408

storm in February, 2007) the combined case resulted in streamflow estimates that improved409

on both the gauge and radar based estimates. Also, during winter and spring months, the410

combined case resulted in streamflow estimates both for peaks and for baseflow conditions411

that generally improved on estimates derived from the gauge or radar datasets alone. Dur-412

ing the evaluation period (Figure 5), similar seasonal characteristics were observed, despite413

the overall assessment that model predictions were, as expected, less accurate during the414

evaluation period compared to the calibration period.415

A scatter plot of the predicted vs. observed streamflow values is another means for judging416

model accuracy (Figure 6). Focusing on the evaluation time period, low flow events (less than417

5 mm) appear to be best modeled by the gauge or combined precipitation estimates, while418

the radar case often overestimated streamflow for low flow events. For medium flows (5 mm -419

20 mm), it is clear that the gauge case most often underpredicted streamflow while the radar420

and combined cases had greater error, but less bias. For the two high flow events (greater421

than 20 mm), the gauge case significantly underpredicted streamflow while the combined422

case did the best at estimating these high flow events.423

Monthly accumulation of the daily average streamflows reveal interesting characteristics424

of the different precipitation cases over both the calibration and evaluation time periods425

(Figure 7). The combined case performed well overall, despite poor performance in certain426

years. During the calibration period in late 2005 and early 2006, for example, the combined427

method was less accurate than the gauge case and more closely matched the radar case, which428

underpredicted observed streamflow. However, in late 2006 the combined case performed429

best at matching observed streamflow, while the gauge case overpredicted streamflow and430
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the radar case underpredicted streamflow. During the evaluation period in late 2009 and431

early 2010, the combined case did not perform as well as the radar case at predicting the432

high flows, although it did perform better than the gauge case.433

The annual aggregation results (Figure 8) show that, during the calibration period (2005-434

2007), the combined case produced an annual water balance that fell between the gauge and435

radar water balances in the years 2005 and 2007. In both of these years, the gauge was436

the most accurate annual water balances. In 2006, the combined case produced an annual437

water balance slightly lower than the radar case, but none of the three cases produced a very438

accurate annual water balance for this year. During the evaluation time period (2008-2009),439

the combined case did well in 2009 at capturing the water balance, but did poorly in 2008440

relative to the radar case. In 2010, all three models over estimated the streamflow by a441

similar amount.442

Given these annual accumulation results, we can say that the combined case most often443

falls between the gauge and radar cases, as expected. However, both the gauge and radar444

cases frequently either under or over predict observed streamflow, and therefore the combined445

case also under or over predicts the annual accumulated flow for these years. Yet when all446

data is accumulated over the period of analysis, the combined case does produce the most447

accurate total water balance by a slight margin over the radar case. It is also clear from the448

total water balance summations that the gauge case produces streamflow predictions that449

overestimate the total water balance observed in the streamflow record.450

Consideration of Alternative Combination Approaches451

The approach presented for combining gauge and radar-based precipitation estimates452

in this study was one of four methods tested as part of our research. We focused the453

discussion on this single method because it performed best of the methods tested. Two454

of the other methods were attempts to identify convective from frontal storms, and to use455

radar for convective storms and gauge data for frontal storms. The hypothesis was that,456

because convective storms are more heterogeneous than frontal storms, radar would best457
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capture those storm events. However, because frontal storms are more homogeneous, and458

because gauge observations of precipitation are generally more accurate than radar-based459

observations, gauge-observations would be optimal for frontal storms. The other method460

we tested was also based on streamflow matching, like the method described in this paper,461

but attempted to match modeled streamflow using radar and gauge-based precipitation462

estimates to observed streamflow, rather than matching the gauge and radar precipitation463

records themselves to observed streamflow.464

For the convective vs. frontal storm hypothesis, we devised and tested two combination465

approaches. First, we simply selected radar precipitation for summer months and gauged466

precipitation for other months. This simple combination approach did not perform well,467

and in fact did not perform as well as simply using the gauged precipitation time series468

to drive the model. In the second approach we took the five gauged precipitation values469

for each day, and if there were high variance between them, we assumed that a convective470

storm event occurred and used radar precipitation estimates for those days. This second471

approach did perform better than using either the gauge or radar estimates alone, but did472

not improve on the combined method described in this paper. The alternative streamflow-473

matching approach also performed better than using either the gauge or radar estimates474

alone, but again did not improve on the combined method described in this paper. This475

was surprising because we expected this approach to better handle the spatial distribution476

of subbasin precipitation selection.477

CONCLUSIONS478

We tested a method for combining precipitation observations from gauging stations and479

from radar-based estimates in order to improve streamflow estimates using a watershed480

model. The method is based on the concept of selecting the precipitation estimates from one481

of these two datasets for each day and for each subbasin based on a matching of observed482

precipitation with observed streamflow. We compared streamflow estimates generated with483

SWAT models calibrated to three different input precipitation datasets (gauge, radar, com-484

19



bined) to observed streamflow to test if the combined method produced better streamflow485

estimates.486

Results of the study show that fusing the two precipitation data sources using the com-487

bined methodology improved model streamflow estimates. The increase of model accuracy488

(measured by E and R2) was expected because the method is allowed to select the best489

precipitation data sources from the gauge and radar options judged by how well each corre-490

sponds to observed streamflow. Our justification for this approach is that a given storm event491

may be better captured by one observational approach (e.g., gauging stations) compared to492

another approach (e.g., radar). Therefore, the goal in the selection process is to reconstruct493

the true precipitation with the assumption that both precipitation observing approaches are494

uncertain.495

The result of this study can aid watershed modelers and decision makers in creating input496

precipitation datasets for watershed models where precipitation gauges are inadequate either497

because the gauges are not in close proximity to the watershed of interest, or because there498

is insufficient spatial coverage of gauges for the watershed area. By considering precipitation499

time series datasets from different sources as imperfect records of the true precipitation that500

fell over the watershed, it becomes reasonable to attempt to merge the two datasets in order501

to reconstruct the true precipitation that fell over that watershed.502

There are certainly other data approaches for the data fusion algorithm that could be503

tested besides the ones described in this paper. For example, our approach ignores valuable504

information such as watershed conditions including vegetative cover or antecedent moisture505

conditions, which could prove valuable in the algorithm. We believe that the primary value506

of this work, therefore, is an argument that imperfect datasets of precipitation can be com-507

bined into a new dataset using algorithms that attempt to maximum informational content508

extraction.509

Despite the success of the combined methodology presented here, we caution that the510

results of this study may be dependent on conditions specific to the region studied (e.g., cli-511
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mate, ecology, and geology). Therefore the methodology we followed for testing the combined512

precipitation datasets and the alterable approaches for combining the two time series briefly513

described in this paper should be applied when using this approach for other watersheds.514
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TABLE 1. Resulting changes in parameter values from model calibrations

Parameter Precipitation Scenario Range Operation

Gauge Radar Combined

Cn2 8.0 23.1 21.0 ±25% % Added
Esco 0.04 0.13 0.10 0.01-1.00 Replaced
SolAwc 24.5 -1.6 22.8 ±25% % Added
Surlag 0.78 0.75 0.89 0-10 Replaced
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a Calibration period.
b Evaluation period.

TABLE 2. Model statistics for the calibration and evaluation periods

Time Period Statistic Gauge Radar Combined

E 0.58 0.59 0.75
2005-2007a R2 0.59 0.62 0.77

PB (%) -6.2 41.0 32.1

E 0.50 0.33 0.60
2008-2010b R2 0.54 0.61 0.74

PB (%) -25.5 -13.7 -10.2
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FIG. 4. Comparison of observed daily streamflow with modeled daily streamflow for a
year during the calibration period.
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FIG. 5. Comparison of observed daily streamflow with modeled daily streamflow for a
year during the evaluation period.
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FIG. 7. Comparison of observed and modeled daily streamflows aggregated to monthly
summations for the calibration (2005-2007) and evaluation (2008-2010) periods.
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