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Abstract

This paper evaluates a recently created Soil and Water Assessment Tool

(SWAT) calibration tool built using the Windows Azure Cloud environment

and a parallel version of the Dynamically Dimensioned Search (DDS) cali-

bration method modified to run in Azure. The calibration tool was tested

for six model scenarios constructed for three watersheds of increasing size

each for a 2 year and 10 year simulation duration. Results show significant

speedup in calibation time and, for up to 64 cores, minimal losses in speedup

for all watershed sizes and simulation durations. An empirical relationship

is presented for estimating the time needed to calibration a SWAT model

using the cloud calibration tool as a function of the number of Hydrologic

Response Units (HRUs), time steps, and cores used for the calibration.
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1. Introduction1

In recent decades, computer simulation of hydro-environmental systems2

has been driven by the need to provide estimates of non-point source pol-3

lution and its impact on waterbodies. While various approaches have been4

used for watershed-scale simulation, distributed continuous time-step simu-5

lation modes are the most advanced. This is attributed to their ability to6

accurately simulate overland flow and its interaction with soil and plants,7

which is a primary source of chemical activities that influence water quality8

(Arnold et al. 1993; Kirkby et al. 1996; Graham and Butts 2005). Watershed9

models often require data such as soil and land cover type, terrain elevation10

and slopes, and historical weather data to perform a simulation. For water-11

shed models of even moderate complexity, model execution can consume a12

considerable amount of time.13

Calibration of a simulation model is a process which aims to provide es-14

timates of model parameters values that minimize the error between model15

predictions and measured observations. In watershed modeling, calibration16

is arguably the most computationally demanding step in creating an accu-17

rate model. There has been significant work in the area of watershed model18

calibration. One contribution to highlight is the Multi-Objective Complex19

Evolution (MOCOM-UA) method proposed by Yapo et al. (1998), which20

is a global optimization algorithm based on the Shuffled Complex Evolu-21

tion (SCE) (Duan et al., 1993). This method has been widely applied and22

illustrates an effective method for performing multi-objective calibration us-23

ing the Daily Root Mean Square (DRMS) and Heteroscedastic Maximum24

Likelihood Estimator (HMLE) objective functions. A second contribution25
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to highlight is Vrugt et al. (2003) that presented a Markov Chain Monte26

Carlo sampler calibration method that efficiently and effectively solves the27

multi-objective optimization problem for hydrologic models. While these ap-28

proaches offer innovative solutions to multi-objective optimization, they do29

not drastically reduce the time necessary to calibrate a model. Using these30

or other calibration methods, it can often take days to complete a single31

calibration for models depending on the size of the watershed, simulation32

duration, and data resolution.33

While there are numerous examples of algorithms applicable for watershed34

calibration, there are few examples of approaches aimed at overcoming the35

computational challenges needed to speedup calibration time. One example36

of such an attempt is Rouholahnejad et al. (2012) which introduced a parallel37

calibration routine for the Soil and Water Assessment Tool (SWAT). In this38

work, the authors tested the Sequential Uncertainty Fitting (SUFI2) opti-39

mization algorithm (Abbaspour et al., 2004) using three different watershed40

models of various sizes within a high performance computing environment.41

Their results show how computational efficiency can be achieved for SWAT42

models by leveraging multiple CPUs in parallel. This past work, however, did43

not make use of a cloud computing infrastructure. A second example is our44

recent work that presented an Azure-based SWAT calibration tool that uses45

a parallel version of the Dynamically Dimensioned Search (DDS) method46

for calibrating a SWAT model (Humphrey et al., 2012). DDS was proposed47

by Tolson and Shoemaker (2007) as a calibration method and is capable of48

optimizing a hydrologic model parameter set in fewer iterations than the49

aforementioned SCE calibration method (Duan et al., 1993). With a parallel50

3



version of this calibration routine (Tolson et al., 2007), it was possible to51

implement the DDS Method in the Azure cloud and provide calibration runs52

that used up to 256 cores (Humphrey et al., 2012). In Humphrey et al. (2012)53

we presented the design and implementation of the cloud-based SWAT cal-54

ibration tool, but did not offer a detailed evaluation or testing of the tool55

across a range of typical watershed sizes and simulation durations.56

Cloud computing offers quick and easy access to shared pools of config-57

urable computing resources that can be utilized with minimal management58

effort and essentially no service provider interaction (Mell and Grance, 2011).59

It presents an attract means for calibrating watershed models because cali-60

bration is performed relatively infrequently by watershed modelers, making61

it a good candidate for a pay-for-use cost model rather than having to invest62

in computer hardware capital and maintenance costs. However, there has not63

been work completed to date that quantifies the cost of calibrating a SWAT64

watershed model using the cloud, so modelers do not have the information65

needed to understand the tradeoffs between using a personal computer, a66

cluster, or the cloud for performing model calibrations.67

Given this motivation, the goals of this study are to (i) evaluate the ability68

of a parallel, cloud-based calibration tool for SWAT presented in Humphrey69

et al. (2012) to converge on an objective function as additional cores are used70

for the calibration, (ii) quantify calibration time and speedup gained by using71

the cloud calibration tool across different sized watersheds, model durations,72

and number of cores used for the calibration, and (iii) quantify the cost of73

calibrating a watershed model using the cloud tool for different sized wa-74

tersheds, model durations, and number of cores used for the calibration. In75
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the following section we provide a brief background of the SWAT model, the76

DDS calibration algorithm, and the Humphrey et al. (2012) implementation77

of DDS in the Azure cloud. Next, the design of several SWAT simulations78

and the methodology used for calibrating them using the DDS algorithm is79

presented. This is followed by an analysis of the calibration results, includ-80

ing speedup and cost analyses for the different sized watershed models and81

simulation durations. Finally, we conclude with brief summary of the study82

findings.83

2. Background84

Background information on SWAT, the DDS calibration method, and85

cloud computing are presented to orient readers to the key concepts and86

terminology used in this study. The cloud-based calibration tool evaluated87

through this work is also briefly summarize from the perspective of a SWAT88

modeler; readers interested in a more technically detailed description of the89

system should refer to Humphrey et al. (2012).90

2.1. Soil and Water Assessment Tool (SWAT)91

SWAT is a distributed, continuous time watershed model that is capable92

of running on a daily and sub-daily time steps (Gassman et al., 2007). It93

was originally developed to better understand the impact of management94

scenarios and non-point source pollution on water supplies at a watershed95

scale (Arnold et al., 1998). It has been used in a variety of watershed studies96

that include both water quantity and quality simulations (Lee et al., 2010; Liu97

et al., 2013; Setegn et al., 2010; Zhenyao et al., 2013). The SWAT model uses98

the concept of a Hydrologic Response Unit (HRU) for representing variability99
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within subbasins of a watershed. HRUs are unique representations of land100

cover, soil, and management characteristics within a single subbasin and are101

used for water balance calculations within the model. HRUs are not spatially102

contiguous and therefore are often composed of many disjointed parcels land103

within a watershed.104

2.2. Dynamically Dimensioned Search (DDS)105

Dynamically Dimensioned Search (DDS) is a calibration method devel-106

oped by Tolson and Shoemaker (2007) to reduce the number of iterations107

needed to achieve optimal parameter values for a watershed model. DDS is a108

heuristic global search algorithm in which the number of iterations is defined109

by the user. The algorithm starts globally by changing all the parameter110

values and changes to a more local search when the iterations approaches111

the user defined maximum allowable iteration. This is done by reducing the112

number of parameters in the calibration parameter set. The parameters in113

the calibration parameter set and the perturbations magnitudes are selected114

randomly without reference to sensitivity. Tolson and Shoemaker (2007)115

used the Town Brook (37 km2) and the Walton/Beerston (913 km2) SWAT116

watershed models to test DDS algorithm. The Town Brook watershed cal-117

ibrated with 14 flow calibration parameter. Their results showed that the118

DDS method with 2500 iterations outperformed the well established Shuf-119

fled Complex Evolution (SCE) calibration method as well as two Matlab120

optimization tools (the fmincon and fminsearch functions).121
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2.3. Cloud Computing122

The broad definition of cloud computing encapsulates applications used123

over the Internet, as well as the hardware and system software provided from124

data centers (Armbrust et al., 2010). While there are currently several public125

and private cloud computing services, this work utilizes the Microsoft Azure126

Platform. Microsoft categorizes its platform as a hierarchy of service models:127

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure128

as a Service (IaaS). SaaS provides business-level functionality in which users129

can quickly develop and deploy software applications on the cloud. PaaS130

offers less abstraction than SaaS by providing access to the virtualized in-131

frastructure that the software systems run on. Finally, IaaS offers the least132

amount of abstraction and is likened to a physical server (or Virtual Machine,133

VM) requiring a high level of interaction, but also providing the most control134

(Vaquero et al., 2008). The cloud-based calibration tool evaluated through135

this work leverages the Azure IaaS functionality (Humphrey et al., 2012).136

2.4. Parallel DDS in the Cloud137

Adapting DDS to the Azure environment presented some issues due to138

Azure’s parallel nature. The Microsoft Windows Azure HPC Scheduler139

(AzureHPC, 2012) allows launching and managing high-performance com-140

puting (HPC) applications and parallel computations within the cloud en-141

vironment. Thus, the Windows Azure HPC Scheduler was used to perform142

job submissions. To function in a parallel environment it was necessary to143

modify the DDS algorithm. In the single-threaded version of DDS, during144

each iteration of DDS the previous model execution results are evaluated145

and, if better than the current best parameter set, are used to create a new146
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parameter set for the next model execution. This “lock-step” approach does147

not trivially work in a multi-core environment. Building from prior work148

describing a parallel DDS algorithm (Tolson et al., 2007), this problem was149

solved by producing numerous initial parameter sets based on the number of150

cores available and submitting them in parallel to VMs in the cloud. As sim-151

ulations completed, their results were applied to an objective function and152

stored in a high availability SQLAzure database. This allowed all the work-153

ers to easily find the current best parameter set. Thus, if more satisfactory154

result was obtained, the next parameter set is produced based on it. This155

is a slight difference compared to the Tolson et al. (2007) approach where156

cores do not need to wait for all jobs in a current batch to complete before157

proceeding. The system architecture of the DDS SWAT calibration tool on158

Windows Azure platform is further described by Humphrey et al. (2012).159

The user provides the SWAT input files and various settings through a160

Web browser interface (Figure 3) to calibrate the watershed of interest on the161

cloud resources (Figure 1). The settings and options provided on the Web162

browser include streamflow gage ID, calibration parameters, objective func-163

tion, and stopping criteria (number of iterations). Once the user uploads the164

SWAT input files and inputs the settings, the streamflow observations for the165

provided gage ID are downloaded using Web services from the Consortium of166

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hy-167

drologic Information System (HIS) (Tarboton et al., 2009). Next, the cloud168

calibration tool begins as previously described. The Web browser allows the169

user to monitor job submissions and download the model input/output file170

directory of the resulting calibrated model.171
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Figure 1: Cloud calibration tool system architecture (adapted from Humphrey et al., 2012)

3. Methodology172

Fist, the cloud calibration tool was evaluated using an increasing number173

of cores and the results were compared to the execution of the tool using a174
9



single core. We used a SWAT model of the Eno watershed in North Carolina175

(171 km2) that had 6 subwatersheds and 65 HRUs for a 2 year simulation176

period to perform the study. The parallelized DDS scenarios were compared177

to the one core execution best efficiency value in terms of the number of178

iterations required to reach the one core best efficiency value. The evaluation179

tests were each executed for 1000 iterations using 8 calibration parameters.180

Results of this evaluation are presented in Section 5.1.181

We next ran a series of tests using the cloud calibration tool to quan-182

tify calibration time, speedup, and cost across three different watershed sizes183

(small, medium, and large) and two different model durations (short and184

long). The small watershed model was the Eno watershed model described185

in the prior paragraph. The medium watershed model was built for the Up-186

per Neuse watershed (6,210 km2) with 91 subwatersheds and 1064 HRUs.187

The Upper Neuse watershed is an 8-digit Hydrologic Unit Code (HUC) wa-188

tershed using the U. S. Geological Survey (USGS) hydrologic unit system.189

Finally, the large watershed model was built for the Neuse watershed (14,300190

km2) with 177 subwatersheds and 1,762 HRUs (Figure 2). For comparison191

purposes, the Neuse includes 4 different 8-digit HUCs and is a 6-digit HUC192

itself. The short model duration was a 2 year simulation with a daily time193

step while the long model duration was a 10 year simulation also with a194

daily time step. The first half of these simulation durations were used as195

an equilibration (spin-up) period needed to establish initial conditions in the196

hydrologic model.197

For comparison, we first ran the model scenarios on a personal computer198

with a serial implementation of the DDS method. We then used the cloud199
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to calibrate the same model scenarios using 1, 2, 4, 8, ... and 256 cores.200

For consistency we used 1000 iterations and 8 flow calibration parameters201

for each test. We used 1000 iterations because the DDS algorithm is gener-202

ally able to produce an optimized model with 1000 iterations and a greater203

number of iteration changes only results in insignificant changes in the ob-204

jective function (Tolson and Shoemaker, 2007). The results of these tests205

are included in Sections 5.2 (calibration time), 5.3 (speedup), and 5.4 (cost).206

Finally, an empirical cost model is presented in section 5.5 for estimating the207

cost to calibrate a SWAT model in the cloud-based calibration tool based on208

characteristics of the SWAT model.209

4. Model Development210

The Neuse watershed (Figure 2) includes both the Upper Neuse and Eno211

watersheds. The Neuse watershed is a mostly rural, although it includes the212

Research Triangle Park region that includes the cities of Durham, Chapel213

Hill, and Raleigh. The climate is mild and the watershed has gently rolling214

topography. The soil type of the watershed is dominated with sandy clay215

loam in the lower portions of the basin and silty clay and loam soils in the216

upper part of the basin. The land cover of the watershed is dominated with217

forest and cultivated crops, in addition to the urbanized areas in Research218

Triangle Park.219

Terrain and land cover data for the Neuse watershed were obtained from220

the United States Geological Survey (USGS) National Elevation Dataset221

(NED) and National Land Cover Database (NLCD) products with the resolu-222

tion of 10 and 30 m, respectively. Soil data were obtained from an ArcSWAT-223
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Figure 2: The three nested watersheds used for the analysis

provided soils raster with a 250 m resolution. This soils raster is based on224

the State Soil Geographic (STATSGO) dataset provided by the United States225

Department of Agriculture (USDA). Weather data including precipitation,226

temperature, wind speed and humidity were obtained for the period 2000 to227

2010 from the National Climatic Data Center (NCDC) and included 6, 21,228

and 40 weather stations near the Eno, Upper Neuse, and Neuse watersheds,229

respectively. Daily average streamflow data were obtained for each water-230

shed’s outlet station (station numbers 02085000, 02089000 and 02091814) for231

the simulation period 2000 to 2010. These data were used to create the Eno,232

Upper Neuse, and Neuse SWAT watershed models using ArcSWAT (Winchell233

et al., 2008).234

We divided each watershed model into subbasins based on the USGS235

streamflow station locations and the river network topology. When creat-236
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ing Hydrologic Respond Units (HRUs) for each subbasin, we used threshold237

values of 10% for soil, slope, and land cover to reduce variability within the238

subbasins. The final models for the Eno, Upper Neuse, and Neuse water-239

sheds were divided into 6, 91, and 177 subbasins, respectively. The SWAT240

documentation recommends between 1 to 10 HRUs per subbasins. Therefore241

the Eno model included 65 HRUs while the Upper Neuse and Neuse models242

had 1064 and 1762 HRUs, respectively. The model was configured to use243

the Natural Resources Conservation Service (NRCS) Curve Number (CN)244

method (Kenneth, 1972) to calculate surface runoff, the Penman-Monteith245

method (Allen 1986; Allen et al. 1989) to calculate potential evapotranspi-246

ration (PET), and the variable storage routing method for channel routing.247

These are commonly used settings for performing simulations with SWAT.248

4.1. Model Calibration249

Once the SWAT model input files were prepared, the I/O directory for250

the SWAT model was compressed and submitted for calibration through the251

SWAT cloud calibration website interface (Figure 3). The objective func-252

tion can be set to maximize either the daily or monthly Nash-Sutcliffe model253

efficiency coefficient (E) value (Nash and Sutcliffe, 1970). We selected to254

maximize the daily E value because there were available data (e.g. precipi-255

tation, streamflow) to support a daily time step model simulation. We used256

a fixed number of iterations as the stopping criterion. Finally, the USGS257

streamflow gage ID, outlet subbasin number, and eight calibration parame-258

ters were supplied through the SWAT calibration interface. Once a model259

has been submitted for calibration, the tool returns a job ID that can be used260

to track the calibration status and download the final, calibrated model.261
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The Eno, Upper Neuse, and Neuse watershed models for 2 and 10 year262

simulations were calibrated three times for each number of cores (from 1 to263

256). When there was an inconsistency in execution time for a scenario,264

we increased the number of executions up to 8 to reach agreement. When265

analyzing the results, the time required to upload and download models to266

and from the cloud was not taken into account as any variability in this267

time for a given model size and duration was attributed to variability in268

network connection speed between the client and Azure head node. The269

size of compressed model input files were 0.6, 6.8 and 10.5 MB for the Eno,270

Upper Neuse, and Neuse watersheds, respectively. Therefore, it should take271

approximately 17 seconds to upload the largest of the three models assuming272

a 5 Mbps network speed, which is minor compared to the overall model273

calibration time.274

Figure 3: Cloud calibration tool user interface
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5. Results and Discussion275

5.1. Tool Evaluation276
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Figure 4: Objective function convergence with respect to cloud core number

Figure 4 shows a comparison between parallelized DDS on 2 to 256 cores277

and non-parallelized (1 core) version of DDS in the cloud. The objective278

function is “1 - Nash-Sutcliffe coefficient (E)” which indicates a better model279

as the value approaches zero. The shaded area shows the variability between280

different executions of the same scenario and solid lines show the average281
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objective function value across all executions of the same scenario. This ob-282

served variation for the same scenario is a property of the DDS algorithm283

(Tolson and Shoemaker, 2007). The results show that on average a 1 core284

DDS execution will converge on the 200th iteration with an objective func-285

tion value of 0.234 (Figure 4 and Table 1). The number of iterations required286

to coverage on this objective function value range between 71 and 285 over287

the 1 core test runs we conducted. Using this convergence value as a basis288

for comparison, the 2, 4, 8 and 16 core DDS executions on average converged289

on this same objective function value on the 96th, 288th, 242th and 319th290

iterations, respectively. Taking the range of required iterations for conver-291

gence into account (Table 1) shows similarity between the scenarios using292

16 or fewer cores. For higher core number executions, the best objective293

function from previous runs are updated less frequently resulting in addition294

iterations required for convergence. Convergence was achieved on average on295

the 438th, 443th and 698th iterations for 32, 64, and 128 core executions,296

respectively. For the 256 core execution, the objective function value was on297

average within 98% of the convergence value of 0.234 after 1000 iterations.298

Although slower convergence speed was observed for these higher core execu-299

tions, the approach still produces continuous improvement in the objective300

function value in part because Virtual Machines (VMs) do not need to wait301

for all jobs in a batch (i.e., the initial 256 jobs set out when using 256 cores)302

to complete before starting a new iteration (Humphrey et al., 2012).303

5.2. Calibration Times304

For comparison purposes, the DDS calibration algorithm was first exe-305

cuted on a personal computer (64-bit Intel Core i7 2.8 Ghz CPU with 4 GB306
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Table 1: Number of iterations for convergence (1 − E = 0.234)

Core Number Iteration Number

Average Minimum Maximum

1 200 71 285

2 96 42 696

4 288 35 529

8 242 47 575

16 319 286 355

32 438 110 485

64 443 314 509

128 698 542 1000+

256 1000+ 669 1000+

of RAM) running Windows 7. A two year calibration of Eno, Upper Neuse,307

and Neuse watersheds took 1 hour, 28 hours (1.2 days), and 51 hours (2.1308

days), respectively. Ten year calibration executions took 6 hours, 113 hours309

(4.7 days), and 207 hours (8.6 days) for the Eno, Upper Neuse, and Neuse310

watersheds, respectively.311

For the cloud implementation of the DDS calibration algorithm, we ran312

the Eno, Upper Neuse and Neuse watershed simulations over 2 and 10 year313

simulation durations. The results are shown in Figure 5 where the solid lines314

for each plot represent the average calibration time and the shaded areas315

represent the minimum and maximum calibration times. As expected, the316

general trend shows a decrease in calibration time with more cores, smaller317

watershed size, and shorter simulation durations. Although the models have318

different sizes and simulation durations, their calibration times decrease at a319

similar rate.320
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In general, the variability in calibration time increases when more cores321

are used for the calibration or for a model simulation with a longer duration322

(Figure 5). Less variability was seen in the 2 year simulation duration for323

up to 64 cores, whereas there was more variability in 10 year simulation324

starting with even 8 cores. It is difficult to explain the cause of the variability325

in calibration times in part because Azure is a shared platform and the326

network traffic and performance of an individual VM will be impacted by327

the number of active users at any given time. Furthermore, VMs are rented328

to users with an estimated rather than exact specification (CPU and RAM),329

causing additional variability in calibration times. Nonetheless, there are330

general patterns in the results that can be used to provide rough estimates331

of calibration time, a topic explored further in Section 5.5.332
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Figure 5: Run time to calibrate the Neuse, Upper Neuse, and Eno watersheds for 2 and

10 year simulation durations using different numbers of cores
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5.3. Speedup333

Speedup was calculated for each number of cores as the ratio of the ex-334

ecution time using one core to the execution time using a higher number of335

cores. We used a fixed number of iterations rather than an objective function336

convergence stopping criteria for the speedup calculation because the DDS337

algorithm is designed assuming a user-specified number of iterations (Tolson338

and Shoemaker, 2007). Figure 6 shows the speedup for Eno, Upper Neuse,339

and Neuse watershed models for 2 and 10 year simulation durations. The340

solid line in the figure represents the averaged cloud calibration times across341

3 to 8 runs while the shaded region shows the maximum and minimum cloud342

calibration times.343

The results show nearly linear scaling up to 64 cores and then a decrease344

from ideal speedup for core numbers above 64. This is due to an increase in345

the number of idle cores during initialization and finalization that become346

significant when the calibration procedure uses 64 or more cores (Humphrey347

et al., 2012). The results also suggest that the size of the watershed model348

and the simulation duration do not have a significant impact on speedup.349

The results show only a slight increase in the average speedup times for the350

longer duration model runs compared to the shorter duration model runs.351

This is likely due to the fact that the data exchanged between the head node352

and the compute nodes for the calibration runs are relatively small consisting353

of new parameter sets sent to the compute nodes and efficiency values sent354

back from the compute nodes (Humphrey et al., 2012). Therefore, speedup355

increases for longer duration model runs because model runtime is a more356

dominate term in the total calibration time compared to data exchange times.357
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Figure 6: Speedup for different watershed sizes and time spans

5.4. Calibration Cost Analysis358

For many users considering commercial cloud services, the decision whether359

to use a tool like the SWAT cloud calibration tool will be determined by360

cost. This tool was built using Microsoft’s Azure cloud and current prices361

for renting VMs in Azure are $0.09 per hour for a small VM (1.6GHz CPU,362

1.75GB RAM), $0.18 per hour for a medium VM (2 x 1.6GHz CPU, 3.5GB363

RAM), $0.36 for a large VM (4 x 1.6GHz CPU, 7GB RAM), and $0.72 for364

an extra large VM (8 x 1.6GHz CPU, 14GB RAM) (AzurePricing, 2014).365

Based on these current prices and the calibration test results, Table 2 shows366

the estimated costs for calibrating the different model scenarios. The esti-367

mates assume $0.09 per core and that VMs can be rented by the minute368
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rather than by the hour, which is the current billing model for Azure (Azure-369

Update, 2013). Given the costs associate with purchasing and maintaining370

multicore computers and clusters and the frequency with which a model-371

ers is tasked with calibrating a SWAT model of a given size and duration,372

these cost estimates can help inform the modeler of a break-even-point where373

renting machines through a cloud service would be more cost effective than374

purchasing and maintaining local hardware.375

Table 2: Cost of calibrating a SWAT model for a ten year model simulations for different

watershed sizes

Number of Eno Watershed Upper Neuse Watershed Neuse Watershed

cores Run Time (h) Cost ($) Run Time (h) Cost ($) Run Time (h) Cost ($)

1 16.58 1.49 307.78 27.70 518.59 41.49

2 8.13 1.46 149.91 26.98 259.69 41.55

4 3.98 1.43 80.31 28.91 133.63 42.76

8 1.98 1.42 36.71 26.43 70.75 45.28

16 1.07 1.54 22.32 32.14 32.79 41.98

32 0.50 1.45 10.04 28.90 19.33 49.48

64 0.27 1.56 5.66 32.60 9.16 46.88

128 0.16 1.79 2.92 33.68 5.11 52.31

256 0.10 2.33 1.78 40.92 3.42 69.94

There are certain advantages to being able to calibrate a watershed model376

either overnight (i.e. about 12 hr) or during half of a workday (i.e. < 4 hr).377

Therefore we have somewhat arbitrarily chosen 12 hours as an acceptable378

amount of time to complete a model calibration and 4 hours as a preferred379

amount to complete a model calibration. Using these two reference point, a380

10 year SWAT calibration of the Eno watershed model would cost $1.46 to381

be performed in under 12 hr and $1.43 to be performed in under 4 hr. The382

Upper Neuse watershed model would cost $28.90 to be performed in under383
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12 hr and $33.68 to be performed in under 4 hr. Finally, the Neuse watershed384

model would cost $46.88 to chosen be performed in under 12 hr and $69.94385

to be performed in under 4 hr.386

5.5. Estimating Calibration Time based on SWAT Model Properties387

Assuming no speedup loss, the slope on Figure 5 should be -1 so that each388

additional core provides the same reduction in calibration time. Therefore389

it is possible to estimate the time to calibrate a SWAT model for a given390

watershed and simulation duration under the assumption of no speedup loss391

as392

log(T ) = (−1) ∗ log(C) + β (1)

where T is estimated cloud calibration time (hr), C is the number of cores,393

and β is a coefficient. This equation can be simplified to find T as function394

of C and the coefficient β (Equation 2).395

T = C−1 ∗ 10β (2)

The β coefficient in Equation 2 represents the y-intersect for each linear396

fit line to the data in Figure 5. These values were determined by fitting a397

power function to the calibration times using 1 and 2 cores, to reduce the398

impact of speedup loss for higher core numbers. This equation takes the form399

y = axk where k ≈ −1 (signifying minimal speedup loss) and β = log(a).400

Estimated β values for each model scenario derived using this approach are401

given in Table 3.402

Through further analysis of the data we found that β is dependent on403

two key properties of a SWAT model. These properties are the number of404

HRUs in the model (U) and the number of simulation time steps (N). We405
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Table 3: β coefficients for each calibration scenario

10 Year Simulation 2 Year Simulation

Eno U. Neuse Neuse Eno U. Neuse Neuse

β 1.22 2.49 2.71 0.49 1.72 1.98

fit a relationship between β and the log of the product of U and N (Figure406

7). In our case, the models were executed on a daily time step interval,407

therefore with a 10 year simulation duration each model had 3,653 time steps408

(with three leap years in the simulation period) and with a 2 year simulation409

duration each model had 730 time steps. Given this, we can express β as a410

function of U and N as shown in Equation 3.411

β = 1.05 ∗ log(N ∗ U) − 4.41 (3)

Combining Equation 2 with Equation 3 gives Equation 4 that can be used to412

estimate the time required to calibrate a SWAT model assuming no speedup413

loss as a function of only two properties of that SWAT model.414

T = 10−4.41 ∗ C−1 ∗ (N ∗ U)1.05 (4)

Equation 4 must be extended to account for the speedup loss observed415

in Figure 6. To account for this, we fit a second-order polynomial to the416

average of the speedup values for the six model scenarios.417

S = −1.4 ∗ 10−3 ∗ C2 + 0.97 ∗ C (5)

A correction factor to account for speedup losses (L) can then be defined as418

the ratio of the number of cores used (C) and the speedup loss (S).419

L = C ∗ (−1.4 ∗ 10−3 ∗ C2 + 0.97 ∗ C)−1 (6)
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Adding this factor to Equation 4 gives an equation that can be used to420

estimate calibration time for up to 256 cores taking into account speedup421

loss.422

T = 10−4.41 ∗ C−1 ∗ (N ∗ U)1.05 ∗ L (7)

Finally, as can be seen in Figure 6, there is significant variability in423

speedup loss for each tested scenario. It is possible to convey this vari-424

ability using upper and lower limits for L. We did this by estimating S using425

second-order polynomials fit to averages of the lower and upper bounds for426

speedup loss shown in Figure 6.427

LUB = C ∗ (−1.7 ∗ 10−3 ∗ C2 + 0.92 ∗ C)−1 (8)
428

LLB = C ∗ (−1.2 ∗ 10−3 ∗ C2 + 1.02 ∗ C)−1 (9)
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These terms can be used as the L term in Equation 7 to estimate lower429

and upper bounds for calibration time (T ) when accounting for observed430

variability in speedup loss.431

We applied Equation 4 with estimates of L using the average case (Equa-432

tion 6) and for the lower and upper bound cases (Equations 8 and 9, respec-433

tively) to compare predicted vs. observed calibration times (Figure 8). On434

average, using Equation 6 for L resulted in estimated calibration times for435

the model scenarios were within 4.1% of measured cloud calibration times436

(Figure 8). The worst case estimation was for the 10 year Upper Neuse wa-437

tershed simulation on 256 cores that was 11.6% over estimated. However,438

this observed calibration time was bracketed by lower and upper bounds.439
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Figure 8: Estimated execution times using Equation 4 with various core numbers for

Neuse, Upper Neuse, and Eno watersheds for 2 and 10 years simulation durations
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6. Summary and Conclusions440

We evaluated the convergence speed of a parallel DDS-based cloud cali-441

bration tool for SWAT described in Humphrey et al. (2012) for an increasing442

number of cores. The evaluation showed that the parallel DDS executions443

require a similar number of iterations (between 96 and 319 iterations, on444

average) for convergence for up to to 16 cores. For higher core numbers,445

additional iterations are needed to reach the same objective function value.446

The 32 and 62 core executions converged within 509 iterations for all tests.447

The 128 core executions took on average 698 iterations to coverage but did448

in some cases take over 1000 iterations to converge. The 256 core executions449

were within 98% of the convergence objective function value after 1000 runs,450

on average. Based on these results, 1000 iterations should still be sufficient451

to achieve convergence of an objective function for the parallel, cloud-based452

DDS tool for up to 256 cores. However, the results also suggest that the453

speedup times discussed in the paper would be different if a stopping criteria454

were used for calibration rather than a fixed number of iterations, given that455

executions using fewer cores (16 or less) converge with less iterations than456

executions that use a higher number of cores.457

We quantified calibration time as a function of number of cores used for458

the SWAT cloud calibration tool across three different sized watersheds and459

two simulation durations. The results show that, for the large watershed460

(Neuse, 14,300 km2) calibration with a 5 year warm-up period and a 5 year461

calibration period took 207 hours (8.6 days) on a personal computer. The462

cloud calibration tool completed the same calibration in 3.4 hours using 256463

cores. Similarly, the small watershed (Eno, 171 km2) and the medium wa-464
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tershed (Upper Neuse, 6,210 km2) took 6 hours and 113 hours (4.7 days) to465

complete calibration on a personal computer, respectively. Using the cloud466

calibration tool with 256 cores, these two simulations were completed in 0.1467

and 1.8 hours, respectively. While the 256 core results are presented here as468

the upper limit for our tests, we found based on a speedup analysis that 64469

cores is the most cost efficient way to calibrate a SWAT model on the cloud470

because there was little speedup loss for each model scenario when using 64471

cores.472

We used the current Azure pricing model to estimate the cost of cali-473

brating a watershed model. For the 256 core results presented earlier in this474

section, the small model calibration (Eno, 171 km2), cost $2.33, the medium475

watershed (Upper Neuse, 6,210 km2) cost $40.92, and the large watershed476

(Neuse, 14,300 km2) cost $69.94 to calibrate. These costs can be reduced477

by using fewer cores, but of course at the cost of increased wait time for478

the calibration to be completed. This information is meant to aid watershed479

modelers in selecting an optimal balance between cost and wait time for a480

particular application. Care should be taken to understand the limitations481

of the execution time and cost estimates, which may vary due to a number of482

factors including load on the cloud’s compute and network resources, as well483

as specifics of the model not considered in this study (e.g., different num-484

bers of parameters used in the calibration or selection of different process485

representations within the model).486

Finally, we derived a relationship to estimate the calibration time for a487

SWAT model as a function of the number of HRUs and time steps used for the488

model, and a given number of cores used for the calibration. This relationship489
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can be used to estimate calibration times using the cloud calibration tool to490

generally within 4% of observed cloud calibration time. We provide a method491

for estimating upper and lower bounds for calibration time estimates based on492

observed variability in speedup times. Applying this relationship for specific493

model applications provides a way for modelers to decide the number of494

cores needed to calibrate a SWAT model within a desired period of time. We495

caution, however, that the equations may not hold for scenarios outside of496

the range that we tested, for example SWAT models with more than 1,762497

HRUs or simulation periods that extend beyond a 10 year duration.498

Software Availability:499

The SWAT cloud calibration software is available for use at the following500

URL: http://gale.cs.virginia.edu/SWAT/Web/portal.aspx.501
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