
Comparing containerization-based approaches for reproducible computational modeling of

environmental systems

Young-Don Choi,a,b Binata Roy,a Jared Nguyen,c Raza Ahmad,d Iman Maghami,a Ayman Nassar,e Zhiyu

Li,f Anthony M. Castronova,g Tanu Malik,d Shaowen Wangf, Jonathan L. Goodalla.*

a Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia,

USA

b AI research Laboratory, R&D Management Department, K-water Research Institute, South Korea

c Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA

d College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA

e Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State

University, Logan, Utah, USA

f Department of Geography & Geographic Information Science, University of Illinois at Urbana-Champaign,

IL, USA

g Consortium of Universities for the Advancement of Hydrological Science, Inc, Cambridge, Massachusetts,

USA

* To whom correspondence should be addressed (E-mail: goodall@virginia.edu; Address: University of

Virginia, Department of Engineering System and Environment, University of Virginia, 151 Engineers Way,

P.O. Box 400747, Charlottesville, VA, 22904, USA; Tel: (434) 243-5019

This is the accepted version of the following published article. Please refer to the published article for the
final version of the manuscript. The corresponding author can provide a copy of the final article upon email
request.

Choi, Y.D., Roy, B., Nguyen, J., Ahmad, R., Maghami, I., Nassar, A., Li, Z., Castronova, A.M., Malik, T.,
Wang, S. and Goodall, J.L., 2023. Comparing containerization-based approaches for reproducible
computational modeling of environmental systems. Environmental Modelling & Software, p.105760

This is an Accepted Manuscript of an article published in the journal Environmental Modelling
& Software published in September 2023, available online:
https://doi.org/10.1016/j.envsoft.2023.105760

2

Abstract

Creating online data repositories that follow findable, accessible, interoperable, and reusable

(FAIR) principles has been a significant focus in the research community to address the

reproducibility crisis facing many computational fields, including environmental modeling.

However, less work has focused on another reproducibility challenge: capturing modeling

software and computational environments needed to reproduce complex modeling workflows.

Containerization technology offers an opportunity to address this need, and there are a growing

number of strategies being put forth that leverage containerization to improve the reproducibility

of environmental modeling. This research compares ten such approaches using a hydrologic model

application as a case study. For each approach, we use both quantitative and qualitative metrics

for comparing the different strategies. Based on the results, we discuss challenges and

opportunities for containerization in environmental modelling and recommend best practices

across both research and educational use cases for when and how to apply the different

containerization-based strategies.

Keywords: Container Technology, Cloud Computing, Reproducibility, Cyberinfrastructure,

Hydrologic Modeling, Jupyter Notebooks

1. Introduction

The rapid advancement of computing offers both opportunities and challenges for

reproducibility in computational research (de Lusignan & van Weel, 2006). On the one hand, new

tools and technologies have made possible complex physical modeling (Kerandi et al., 2018), deep

learning (Shen, 2018), and interdisciplinary modeling (Laniak et al., 2013; Vogel et al.,

2015). Additionally, with the possible exception of non-deterministic modeling approaches that

rely on unique random seeds, there is some level of confidence that if the same input data and

model software are executed on ‘identical machine’, it will result in the same output, even when

the modeling software is very complicated (Sacks et al., 1989). On the other hand, creating

“identical machines” including both hardware and software on a machine is very difficult in

practice. When these computational models are moved to a new machine, modelers often

experience difficulties reproducing the same model results (Baker, 2016; Essawy et al., 2020;

Hothorn & Leisch, 2011; Wilson et al., 2017). This is because the way software is packaged,

installed, and executed on specific hardware to create ‘identical machines’ is often very

complicated and difficult, even when these steps are well documented (Garijo et al., 2013).

The rapid evolution of software versions is one key factor that makes computational

reproducibility so challenging (Epskamp, 2019; Yuan et al., 2018), especially open-source

software commonly used in many scientific communities. Slight differences in the computational

environment, including but not limited to software dependencies, can result in unexpected errors

in re-executing models (Stagge et al., 2019) and can significantly influence the model outputs. As

a result, researchers have been highlighting the difference between what might be thought of as

reproducible work such as simply sharing data and workflow documents, and what is, in fact,

4

required for reproducible work: sharing computational environments and automated workflows

(Beaulieu-Jones & Greene, 2017; Chuah et al., 2020; Essawy et al., 2020; Kim et al., 2018).

To overcome what might be called the “reproducibility gap,” researchers have presented

not only high-level guidelines and principles (Choi et al., 2021; Essawy et al., 2020; Gil et al.,

2016; Wilkinson et al., 2016) but also developed various software tools for specific tasks required

for computational reproducibility (Kurtzer et al., 2017; Merkel, 2014; That et al., 2017). For

example, while online repositories that follow FAIR (Findable, Accessible, Interoperable,

Reusable) guiding principles (Wilkinson et al., 2016) continue to mature, it has led not only to a

growing demand for sharing well-documented data, source code, software, and workflows, but

also with software for automatically encapsulating computational environments and workflows

using containerization and literate programming (Kery et al., 2018; Knuth, 1984).

These new tools and concepts open the door to applying FAIR guiding principles that are

inclusive of not just data but also modeling software. For example, Bast (2019) suggested that

source code management and containerization tools are needed to reproduce the computational

environments that underly computational models, while Goble et al. (2020) suggested the FAIR

principles are required for end-to-end workflows to describe the execution of a computational

process such as data collection, data preparation, data analysis, and data visualization. Researchers

are beginning to create the cyberinfrastructure needed for such approaches. Reproducibility of

computational environments and automated workflows have been shown to be critical to filling

the computational reproducibility gaps in practice (Piccolo & Frampton, 2016; Rosenberg et al.,

2020; Sandve et al., 2013). In hydrology, Hutton et al. (Hutton et al., 2016) recommended an online

repository to easily find data and source code with unique persistent identifiers and computational

workflows to describe the precise procedure among data and modeling processes. In addition, Hut

5

et al. (2017) suggested the use of containerization tools and open interfaces to complement the

preservation of computational environments suggested by Hutton et al. (2016).

To discuss reproducible computational modeling, it is first important to define and agree

to the main software components used in environmental modeling studies. In this paper, we

consider three main software components: 1) the core model software (i.e., what could be thought

of as the model engine), 2) secondary software needed to support the modeling application (i.e.,

software dependencies and support tools), and 3) modeling workflows that capture the end-to-end

modeling application (i.e., from data preparation to analysis and visualization of the model output).

The core model software is often developed using a compiled programming language and is

optimized for computational performance. The secondary software needed to support the modeling

application might include a Graphical User Interface (GUI) or an Application Programming

Interface (API) for creating and analyzing input and output files associated with the core model

software. Many such model APIs now exist for different environmental models (Choi et al., 2021;

Lampert & Wu, 2015; B. McDonnell et al., 2020; Volk & Turner, 2019) and offer a powerful way

of programmatically creating and interacting with the so-called model instances (Morsy et al.,

2017). Finally, modeling workflows are important to capture the entire end-to-end process, using

model APIs and scripting to link the entire end-to-end process from raw data to publication-ready

figures.

Despite progress in understanding and creating more reproducible modeling studies across

fields, many challenges remain (Reinecke et al., 2022). We argue that a significant reason for these

remaining challenges is the required level of human expertise to install and configure complicated

computational modeling setups. Outside of a few well-maintained and often commercial or

government-backed organizations, many model developers might understand the specific

6

requirements for reproducing their environmental models on other computers, but documenting

this procedure with enough detail for others to follow can be challenging. The challenge resulting

from the increased complexity of software systems is not unique to environmental modeling or

even scientific modeling more generally; it is, in fact, a common problem in software engineering.

To address this challenge, computer scientists and software engineers have developed

sophisticated containerization tools to encapsulate complex software as a virtual machine or

environment (Bentaleb et al., 2022). Therefore, this paper aims to compare various local and

remote computational approaches to advance reproducible environmental modeling (Hut et al.,

2017; Choi et al., 2021).

While these containerization tools offer an important opportunity, it can be challenging for

environmental modelers to know how best to utilize them for different modeling use cases and

applications. Many containerization approaches exist, and the options for using these approaches

across different computational environments (e.g., the researcher’s personal computer to remote

cloud-computing environments) make the advantages and disadvantages of leveraging

containerization difficult to discern. Thus, the goal of this paper is to compare different local and

remote computational approaches for advancing reproducible environmental modeling. We

evaluate ten approaches, in total, using a hydrologic modeling case study leveraging the Structure

for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a) modeling framework

and a set of quantitative and qualitative metrics. We discuss the benefits and weaknesses of each

approach and summarize recommended best practices for using the approaches to achieve different

modeling objectives. Finally, we discuss remaining knowledge gaps in creating reproducible

computational models that require future research and development.

7

2. Methodology

2.1 The Computational Reproducibility Approaches

The ten computational reproducibility approaches considered in this study are given in

Table 1. The approaches are first categorized as using primarily local or remote computational

resources for execution. For the local approaches, a virtual machine (VM) in Virtual Box with

specifications typical of a personal computer was used for model execution. For the remote

approaches, each approach leveraged JupyterHub but was implemented using different

cyberinfrastructures: Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI) JupyterHub, CyberGIS-Jupyter for Water (Yin et al., 2019), and BinderHub to build a

Jupyter instance from a code repository.

Table 1. Approaches for computational reproducibility through containerization considered in the

study.
Approach

No.
Local and Remote

Computational Environments
Combination of Software Tools and Modeling Workflows

 1) Core Model
Software

2) Secondary
Software

3) Modeling
Workflow

1 L
O
C
A
L

Virtual Box

GNU Make Conda Virtual
Environment Jupyter

Notebook
2 Docker
3 Docker
4 Singularity
5 Sciunit
6 R

E
M
O
T
E

CUAHSI JupyterHub Docker Jupyter
Notebook 7 CyberGIS-Jupyter for Water Docker

8 CUAHSI JupyterHub Sciunit
9 CyberGIS-Jupyter for Water Sciunit

10 Binder Docker Jupyter Notebook

The second categorization is based on what components of the end-to-end modeling

workflow are containerized and using which containerization technology. As stated earlier, we

consider a computational model consisting of three primary software components: 1) the core

model software, 2) secondary software, and 3) a modeling workflow. Approaches for

8

computational reproducibility through containerization may address one or more of these

components. Likewise, different containerization technologies exist including Docker, Singularity,

and Sciunit. We did not test all combinations of component containerization using different

technologies, but rather we focused on logical combinations, which based on our judgement,

would most likely be used by environmental modelers. Finally, in the first two cases we used GNU

Make and a Python-based Virtual Environment (Conda VE) to include approaches commonly used

by modelers for comparison purposes. While not directly using containerization, these approaches

represent ways for achieving more portable and reproducible environmental modeling applications

and represent a meaningful base case for comparison.

The first five approaches in Table 1 all leverage local computing resources, which means

a VM on the modeler’s own workstation for running the end-to-end modeling workflow. Approach

1 represents a standard approach commonly used by modelers (Peckham et al., 2013) in that the

model software is compiled using GNU Make and the secondary software, written in Python, is

encapsulated in a Conda VE. Approach 2 introduces formal containerization tools rather than only

encapsulation, but only for the core model software component using Docker as the

containerization solution. Approach 3 builds on Approach 2 by using containerization for not only

the core model software, but also the secondary software supporting the model, again using Docker

as the containerization tool. Approach 4 further builds on Approach 3 by keeping the same

containerization strategy but switching the containerization tool from Docker to Singularity.

Finally, Approach 5 also builds from Approach 3 but uses Sciunit rather than Docker or Singularity

as the containerization tool. Thus, across these five approaches, we begin from a standard approach

without direct use of containerization technologies and build to an end-to-end modeling workflow

leveraging three containerization technologies: Docker, Singularity, and Sciunit.

9

Approaches 6-10 make use of remote computational resources to compute the same end-

to-end modeling workflow. Approach 6 uses the CUAHSI JupyterHub (hereafter CJH), a cloud

computing environment on the Google Cloud Platform specifically designed to support research

and education in the water sciences. Approach 7 uses the CyberGIS-Jupyter for Water platform

(hereafter CJW), a CyberGIS-Jupyter instance tailored to support data-intensive and reproducible

research in the environmental modeling community built on the Jetstream computational resource

(Yin et al., 2018). In both approaches, Docker is used as a containerization technology. Approaches

8 and 9 again use CJH and CJW, respectively, but with Sciunit in place of Docker as the

containerization tool. Singularity is not typically used in JupyterHub environments (Prasad et al.,

2020), so it was not considered for these approaches. Approach 10 uses a containerization

approach called Binder that allows users to create a custom JupyterHub instance from a code

repository using Docker as the containerization technology (Jupyter Project et al., 2018). Further

detail about the specific procedures and characteristics of each approach is presented in the

following subsections.

2.1.1 Local Approaches

For the five local approaches, we used Virtual Box to create a consistent Linux virtual

environment (Ubuntu 20.04 LDT) with a Windows operating system and a single-core processor

(Table 2). We considered this to be a typical personal computer used by modelers, although we

acknowledge many modelers would have access to workstations with higher end computational

and memory resources.

10

Table 2. Specification of the base local computational environment
Specification Descriptions

Processor Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
RAM 15.6 GB

Base Operating System Windows 10
Linux Emulator VirtualBox 5.2.12

Linux Operating System Ubuntu 20.04 LDT
Number of CPU Cores 1

Figure 1 shows the steps required to complete the five local approaches from the

perspective of a developer, that is the person setting up the modeling workflow, and the user, that

is the person executing the workflow for a given input dataset. These steps are used to evaluate

each approach across a set of metrics which are described later in the paper.

11

Figure 1: The steps required for the five local approaches from the developer and user

perspectives.

12

As shown in Figure 1a, to set up Approach 1 the developer must complete the following

steps: 1) create a Makefile; 2) compile and build the core software executable; and 3) share the

source code and Makefile on an online repository such as GitHub or HydroShare. Next, the Conda

VE is created to support the secondary software for the modeling workflow. Finally, the Jupyter

notebooks that document the end-to-end modeling steps are created and shared. Once the end-to-

end model workflow has been captured, the developer’s job is complete, and a user can reproduce

the modeling study. The steps the user must take to execute Approach 1 are 1) download the source

code and Makefile for building the environmental model; 2) edit the Makefile to set the paths to

the configuration files and software dependencies for the environmental model software on the

user’s computer; and 3) compile and build the executable of core model software. Once these steps

are complete, the user must download the Jupyter notebooks that document, the end-to-end

workflow, including installing the required software, downloading model input data, and executing

the environmental model. Compared to the developer work, the user work is simpler because the

Jupyter notebooks document the workflow, and the user’s task is focused mainly on compiling the

core model software and installing secondary software.

Figure 1b shows the procedure for Approach 2 where the developer must 1) create a

Dockerfile, which has instructions to download and build software, 2) create a Docker image from

the Dockerfile, and 3) share the Docker image on an online repository such as the DockerHub.

This process is often not a linear sequence of steps, but an interactive process where creating the

Docker image is time-consuming involving testing and verification before the Docker image is

finally shared. Once this process is complete, however, the user only needs to install Docker using

the simple command “sudo apt install docker.io” to get the core model operating correctly. The

13

user must still obtain and run the Jupyter notebooks representing the end-to-end workflow,

including installing required secondary software and input files, before executing the model.

For Approach 3 (Figure 1c), the developer’s first step is creating Jupyter notebooks to

containerize workflows into a Docker container. Next, the developer must create a Dockerfile that

includes the commands needed to containerize the core environmental model software, Python-

based model API, and modeling workflows. In this approach, users only need to install Docker

and run the Docker image because the Docker image has the required dependencies. Then user can

open and run the Jupyter notebooks to reproduce the end-to-end workflow.

In Approach 4 (Figure 1d), the developer will first create a Definition file to create a

Singularity image that includes a dependency list. Next, the developer must make a “kernel.json”

file to link a Jupyter kernel with the Singularity image and Jupyter notebooks. Next, the developer

can share the Singularity image through online repositories including Singularity Hub. Developers

must also create and share Jupyter notebooks and the model input for the modeling workflows.

After the developer’s work is complete, the user needs to download the Jupyter notebooks first,

then open and run the Jupyter notebooks. The Jupyter notebooks handle the rest of the workflow

including downloading the Singularity image of the core environmental model software, creating

the Jupyter kernel to establish a link between the Singularity image and Jupyter notebooks,

downloading the model input data, and executing the environmental model.

 Finally, in Approach 5 (Figure 1e), the developer first creates a Jupyter notebook to

encapsulate workflows using Sciunit (Essawy et al., 2018). Next, the developer creates a Sciunit

container using the programming code and the Jupyter notebook. After that step is complete, the

developer can share the Sciunit container and the Jupyter notebook. Users then can download the

Sciunit container and Jupyter notebook and only need to open and run the corresponding Jupyter

14

notebook. Unlike other approaches, users do not need to download the model input as the Sciunit

container includes the model input and all the software dependencies.

2.1.2 Remote Approaches

Figure 2 illustrates the steps required to complete the five remote approaches from the

perspective of the developer and the user. As with the five local approaches, these steps are used

to evaluate each approach across a set of metrics that are described later in the paper.

As Figure 2a shows, for Approaches 6 and 7 the developer must create a Dockerfile, similar

to Approaches 2 and 3. The user may use GitHub to add a new Dockerfile as a pull request to the

CJH or CJW GitHub repository. After sending a pull request to the GitHub repository of CJH or

CJW, the Dockerfile needs to be reviewed by CJH or CJW development team to deploy a new

Docker image. After finishing the developer’s work, users only need to log into CJH or CJW and

run Jupyter notebooks because the modeling environments are preconfigured and shared through

the environmental profiles of CJH or Jupyter kernels of CJW. Figure 2b shows the general

procedure of Approaches 8 and 9 that follow the same steps as Approach 5 (Figure 1e) using

Sciunit, so they are not explained further here.

15

Figure 2. The steps required for the five remote approaches from the developer and user

perspectives.

Figure 2c shows the general procedure of Approach 10. First, the developer must create a

configuration file that is supported by Binder to encapsulate the environmental model software

and Python-based model APIs used by the model. Next, the developer must create Jupyter

16

notebooks to document the modeling workflow. Then, the developer shares the configuration files

and the Jupyter notebooks through an online repository such as GitHub, Figshare, Zenodo, or

HydroShare. After that, the developer uses MyBinder to create a remote modeling environment

for the modeling setup. Finally, the developer can share the Binder URL pointing to the remote

modeling environment with end-users.

2.2 Evaluation of the Approaches

We evaluated the ten approaches (five local and five remote) against a set of quantitative

and qualitative metrics using a hydrologic modeling study as an example application. In this

example application, we used the SUMMA (Clark et al., 2015a) hydrologic model as the core

model software, pySUMMA (Choi et al., 2021) and other Python packages as the secondary

software, and Jupyter notebooks to orchestrate the end-to-end modeling workflow. These three

components are described in further detail in the following subsection. We then describe the

quantitative and qualitative criteria used to evaluate the ten approaches.

2.2.1 Modeling Application used for the Evaluation

SUMMA was selected for the evaluation because it represents a typical numerical

computational model used in environmental studies. It is, in fact, more of a modeling framework

since it enables the controlled and systematic evaluation of multiple model representations of

hydrologic processes and scaling behavior through a flexible hierarchical spatial structure.

SUMMA was developed in Fortran, and we used the Fortran compiler ‘gfortran’ to compile the

source code. Also, SUMMA requires the NetCDF (Network Common Data Form) and LAPACK

(Linear Algebra PACKage) libraries. The NetCDF library (libnetcdff.*) supports creating,

accessing, and sharing data stored in a NetCDF format, the file format used by SUMMA. The

LAPACK library provides a series of routines for linear algebra operations, including matrix

17

solvers. These libraries are considered core software for the model because they are required for

the model to be compiled. SUMMA Makefile and Dockerfiles are shared through the SUMMA

GitHub repository (SUMMA GitHub, 2021) to support compiling SUMMA source code and

creating a SUMMA Docker image. Also, the created SUMMA Docker image is shared via

DockerHub (SUMMA DockerHub, 2021).

Other secondary software, not required to compile SUMMA but convenient for working

with SUMMA input and output files, includes pySUMMA, a Python-based SUMMA model API.

pySUMMA allows programmatic control of the model configuration, execution, and visualization

of SUMMA models. Currently, pySUMMA can be installed from either a Conda command (e.g.,

“conda install –c conda-forge pysumma”) or a pip command (e.g., “pip install pysumma”). Users

can also download the pySUMMA source code from its pySUMMA GitHub repository and install

it manually using “environment.yml” for conda install or “setup.py” for pip install. The

“environment.yml” and “setup.py” files have the lists of pySUMMA dependencies for each

installation method, thus making it possible to install the pySUMMA environment with

dependencies on a new machine.

Finally, for modeling workflows, we used Jupyter notebooks to create modeling workflows

through a mix of formatted text, mathematical equations, and executable code with in-line

visualizations. We created Jupyter notebooks for each of the ten reproducible approaches described

earlier to encapsulate reproducible artifacts and modeling workflows. These notebooks are

available as products of this research as described in the Data and Software Availability section of

this paper.

We used hydrologic modeling experiments described in Clark et al. (2015b) in our

evaluation. Based on these experiments, we created four scenarios (Table 3) using two datasets to

18

reproduce Figures 7, 8, and 9 in Clark et al. (2015b). The first scenario is a single simulation for

15 months using the Simple Resistance method, as the stomatal resistance parameterization in

SUMMA. The second scenario includes nine ensemble simulations for analyzing the impact on

ET using 1) three different stomatal resistance parameterizations, Simple Resistance, Ball-Berry

(Ball et al., 1987), and Jarvis (Jarvis, 1976), and 2) three different values (1.0, 0.5, 0.25) of the

root exponential distribution parameter. The first and second scenarios aim to reproduce Figures

7 and 8 in Clark et al. (2015b) (included here as Figure A.1). The third scenario is a single

simulation for 75 months to analyze the impact of using the 1d Richards method (Celia et al.,

1990), which is one of the lateral flow parameterizations in SUMMA, on runoff. The fourth and

final scenario is three ensemble simulations to analyze the impact of using three different lateral

flow parameterizations: 1d Richards, Lumped Topmodel, and Distributed Topmodel (Duan &

Miller, 1997) on runoff. From the third and fourth scenarios, our aim is to reproduce Figure 9 in

Clark et al. (2015b) (included here as Figure A.2).

Table 3. SUMMA simulation scenarios for evaluating the ten reproducible approaches.
Scenario Descriptions

(a) Scenario 1
□ A single simulation (simple resistance method)

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months)

(b) Scenario 2

□ Ensemble simulations (9 simulations)
- 3 different parameterizations (Simple Resistance, Ball-Berry, and Jarvis)
 × 3 different parameters (Root Exponential values 1.0, 0.5, 0.25)
□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months)

(c) Scenario 3
□ A single simulation (1d Richards)

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months)

(d) Scenario 4
□ Ensemble simulations (3 simulations)

- 3 different parameterizations (1d Richards, Lumped Topmodel, and Distributed Topmodel)
□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months)

2.2.2 Quantitative Performance Metrics

The following quantitative measures were used to evaluate the ten approaches. 1)

Competency considers the level of effort in reproducing each step in the approach and is an

19

important metric for lessening the burden of reproducibility work for researchers (Atmanspacher

et al., 2014). 2) The size of computational artifacts takes into account the storage requirements for

storing and sharing each approach, another important factor in the adoption of reproducible

approaches (Craig & Victoria., 2020; Kovács, 2017). 3) The computational time measures the wall

time required to execute the approach, which can vary significantly across approaches and impact

the usability of the approach (Kozhirbayev & Sinnott, 2017).

For the competency metric, we evaluated the level of skill required to complete each step

of the approach from both the developer and user perspectives. We defined three levels: Minimal,

Moderate, and Substantial. Minimal means basic skills are required including downloading, setting

up, and running the code without any changes in the basic workflow. Moderate means additional

skills are needed including editing and creating simple codes in the existing workflow. Finally,

Substantial means requiring expertise in coding and re-configuring the existing workflow.

In order to given numerical scores to these categories, we scored ‘Minimal Skill’ as an

integer between 1 and 3, ‘Moderate Skill’ between 4 and 6, and ‘Substantial Skill’ between 7 and

9. As this was done for each step in an approach and an overall ‘total score’ for the approach was

calculated as simply the sum of all steps in that approach. Since this scoring can be subjective, we

had six experts, all co-authors of this paper and knowledgeable of the modeling steps as both users

and developers, complete the evaluation independently and report the range of scores in the results

section. The Appendix (Table A.1 – A.7) includes the questionaries used to obtain the competency

scores for the ten approaches.

For the size metric, we measured how much space is used to store all digital artifacts

associated with the reproducible approach. We only considered the size metric for the five local

approaches and not the five remote approaches because the size of the preconfigured

20

computational artifacts in a remote environment will be determined by the specific technical

implementation in that remote environment and will have less impact on the end user. Finally, for

the computational time metric, we measured the execution time across all ten reproducible

approaches. In this performance metric, we measured the wall time required to run the end-to-end

workflow for the approach.

2.2.3 Qualitative Performance Metrics

In terms of qualitative performance metrics, we first describe the strengths and weaknesses

of each approach through our experience implementing each approach from both the developer

and user perspectives. We then considered two broad use cases for environmental models: 1)

education and 2) research. Based on the strengths and weaknesses and with these two use cases in

mind, we present recommendations for best practices when using each of the ten approaches.

3. Results

3.1 Quantitative Evaluation

3.1.1 Required Competency

The resulting competency metric scores, grouped by developer and user work, are shown

in Figure 3. The boxplot depicts the range of the scores across the experts who rated the

competency needed to complete each step of each approach. The total score for developer work

was consistently higher than the user work, indicating that the developer work requires greater

competency or effort than the user work. This is expected as the competency was defined around

coding and computing skills rather than modeling skills. Interestingly, there was less variability in

scores when evaluating the user’s work compared to the developer’s work, meaning there was

more agreement among those who completed the evaluation about the competency required for

the user steps. To help visualize the results for each approach, the median scores are depicted in a

21

spider plot (Figure 4) to show how each approach ranks across the developer and user competency

metric scores.

Figure 3: Competency metric scores for each approach for the steps completed by the Developer

(D) and User (U). The box plots represent the range of scores across the six individuals who

rated the approach.

22

Figure 4: The median competency metric scores for (a) local and (b) remote reproducible

approaches for the developer and user work.

In terms of developer work, Approach 1 (Score = 35) was scored as the most complicated

approach among the local approaches. In this approach, the developer needs to reproduce every

step individually as it does not use containerization technology. In terms of user work, most

approaches have a low score compared to Approach 1. Approach 5 was scored as the simplest

approach from both the developer (Score = 19) and user perspectives (Score = 3). For the remote

approaches and in terms of developer work, approaches 6 and 7 were judged to require a high level

of competency. Because Dockerfile must be programmed, it requires a considerable amount of

knowledge about the Docker platform and its API, it can be a complex task for the model

developers. Furthermore, for cloud environments like CJH and CJW, developers themselves

cannot install new models until they are reviewed by the larger CJH and CJW development teams.

Approaches 8 and 9 were judged to be the simplest approaches considering developer (Score = 19)

and user work (Score = 3). These approaches used Sciunit which can containerize modeling

environment and workflow into a container by recording steps in the model execution code created

with no additional work. This allows users to easily reproduce published results using Sciunit

containers and commands in a Jupyter notebook. Approaches 6, 7, and 10 are the simpler in part

because dependencies for the environmental modeling code are preconfigured into containers.

3.1.2 Size of Reproducible Artifacts

Figure 5 shows the sizes of the digital artifacts for the five local reproducible approaches.

Approach 5 is the most lightweight and it is ten times smaller than Approach 4, which is the second

most lightweight. This is because Sciunit only encapsulates dependencies that are used during

modeling workflows, compared to other containerization tools that containerize additional

23

software and Python libraries that may be stated for example in a Dockerfile but not directly used

in the workflow. Sciunit further uses content-based deduplication to determine redundant file

blocks across files used in a workflow (That et al., 2017; Yuan et al., 2018). In addition, Approach

4 is lighter weight than Approaches 1-3 because Singularity utilizes a flatter structure for files in

an image, meaning all files of an image are combined into a single image format and compressed.

In contrast, Docker uses a concept of layering of files in which files are shared across multiple

images. The layered file system on disk, however, is not compressed as in Singularity and thus the

result in Figure 5. We note that currently we have a single model run and layering does not offer

much space saving but can do so if the developer is using multiple containers. We also anticipate

that in that case a compressed file system will offer more savings than layering and the overall

result trend will be the same. This concept used in Docker is not helpful for a single model software

run, but it will help when researchers want to use multiple commands with layered images. Finally,

approach 1 and 2 do not use container tools and thus do not take advantage of file system saving

methods such as compression and deduplication. The sizes required for each of the dependencies

are given in detail in Table A.8.

Figure 5. Comparison of the size for reproducible artifacts for the local reproducible approaches.

24

3.1.3 Workflow Runtime

Figure 6 shows the results of the workflow runtime comparison for the approaches using

(a) local and (b) remote compute resources across the four modeling scenarios described in Table

3. When we compare the five local approaches; it shows that Approach 5 is slightly slower than

the other approaches. However, the overall computing time is similar across the five local

reproducible approaches. For the remote approaches, Approach 7 was the fastest approach even

though the approach requires additional time to submit jobs between CJW to distributed HPC

resources and retrieve model output from such resources to CJW. Although there are variations

according to the status of memory use, the rest of the remote reproducible approaches are similar

to the local ones. Due to how the model runs were setup using Dask, a Python library for parallel

computing (Rocklin, 2015), and because Dask automatically allocates multiple cores for ensemble

simulations, the Sciunit encapsulation of the ensemble simulations (Scenarios 2 and 4) were not

configured to take advantage of the multiple cores. Hence, the runtime for Scenarios 2 and 4 were

excluded from the figure 6(a). From the performance test of computing time, for data-intensive

modeling such as the simulation of fully distributed models and Contiguous United States

(CONUS) scale models, we can see the value of using remote environments that can access HPC

resource.

25

Figure 6. Comparison of computing time in the (a) local and (b) remote reproducible approaches.

Overall, if we summarize the result of quantitative performance, we find that the local

reproducible approaches require more competency in coding and computing skills, more

computational time, and more space compared to remote ones. For both local and remote

approaches, the developer work requires a remarkably higher level of effort than the user work. If

we compare different containerization tools across the local and remote approaches, Docker was

the heaviest weight and was judged to require greater competency. On the other hand, Sciunit was

the most lightweight and required less competency to use compared to other containerization tools.

Finally, Singularity excelled as a containerization approach for parallel computing. It is worth

noting that the performance of containerization-based approaches can vary based on the type (e.g.,

26

hydrologic model SUMMA vs. atmospheric model Weather Research and Forecasting WRF) and

scale of the environmental model (e.g., local vs. global). For different types of models, the

challenges lie in model compilation difficulty and the developers' competency. In terms of

modeling scale, factors such as model complexity and watershed scale come into play, with the

performance of approaches being influenced by the memory size of the computer used.

3.2 Qualitative Evaluation

3.2.1 Strengths and Weaknesses of Approaches

The strengths and weaknesses of the five local reproducible approaches judged through this

research are presented in Table 4. For Approach 1 (Table 4a), a strength is that the GNU Make

tool is a common method to share model software and GNU Make itself is important because

within each containerization tool GNU Make must be run to build the SUMMA executable.

However, this approach is still difficult for many model users as it requires a higher level of

computational competency. Therefore, having the developer with the skills required to complete

this step and then sharing a containerized version of the model software reduces the burden on the

model user.

27

Table 4. Qualitative evaluation of the strengths, weaknesses, and recommended usages for the

local approaches.

(a) Approach 1: Compiling the Core Model Software

Strengths
□ [D, U] GNU Make itself is important because this tool has to use in 10 reproducible approaches

□ [D] Efficient for model software developers to review and apply their new and modified source code

Weaknesses □ [U] Difficult to apply Makefile configuration setting for compiling model software
Recommended
usages □ [Research] Model software development and management

(b) Approach 2: Containerizing the Core Model Software with Docker

Strengths
□ [U] Easy to download and use Docker images for model software via DockerHub

□ [U] Efficient to install new Python packages or other libraries for various application research

Weaknesses □ [U] Unexpected errors may occur when users create Conda VE manually
Recommended
usages □ [Research] Model application with flexible application of various Python packages and other libraries

(c) Approach 3: Containerizing All Software with Docker

Strengths

□ [U] Easy to download and use Docker images for environmental modeling via DockerHub

□ [U] Possible to use all required model software and other software from a Docker image

□ [U] Stable steps to use environmental models

Weaknesses □ [U] Limitation to install new model software or other software
Recommended
usages □ [Education] Offline education requiring stable and consistent reproducibility

(d) Approach 4: Containerizing All Software with Singularity

Strengths
□ [D] Easy to convert Docker images to Singularity images using docker2singularity library

□ [U] Lightweight than other reproducible approaches except Sciunit

Weaknesses □ [U] Niche usage comparing to Docker

Recommended
usages □ [Research] Models requiring HPC

(e) Approach 5: Containerizing All Software and Workflow with Sciunit

Strengths

□ [D, U] The simplest complexity for reproducibility in both developer and user perspective

□ [U] The most lightweight in ten reproducible approaches

□ [D, U] Easy to share Sciunit containers in a file format

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install

Weaknesses
□ [U] Niche usage comparing to Docker and Singularity

□ [U] Does not encapsulate automatic allocation of parallel computing such as Dask

Recommended
usages

□ [Education] Offline education

□ [Research] Reliable reproducibility as Sciunit can containerize all reproducible artifacts into a
container without significant memory use

 [D] = Developer; [U] = User

28

Table 4b presents the results of the qualitative performance evaluation for Approach 2.

This approach uses Docker to containerize only the core model software; therefore, users can easily

reproduce SUMMA using Docker from DockerHub. In addition, users can install and apply new

Python libraries as model APIs without any limitations. After downloading the SUMMA Docker

image and installing pySUMMA within a Conda VE, users can execute SUMMA using the

“docker” option in the pySUMMA “run” method. Even if users have not downloaded the SUMMA

Docker image on the local computer, pySUMMA can automatically download it from DockerHub.

However, sometimes when users create the Conda VE, unexpected errors may occur, requiring the

user to create the Conda VE manually. Therefore, we recommend this approach for model

applications where the user requires flexibility in what Python packages and other libraries are

needed to complete the application.

 Table 4c presents the results of the qualitative performance evaluation for Approach 3.

This approach containerizes every dependency into a Docker image; therefore, the procedure is

stable and consistent in that it is unlikely that errors will occur across users. However, there is a

limitation when attempting to install new software or dependencies because users must work inside

a Docker image, even if users can install new dependencies, they are temporary. Therefore, this

approach is helpful for offline education for practicing and reproducing published results on local

computers (public or personal computers) but is less well suited for use cases that require the

extension of past work.

Table 4d presents the qualitative performance evaluation results for Approach 4. It is

lightweight compared to other reproducibility approaches, except for Sciunit. Currently,

Singularity is less widely used than Docker, so sometimes researchers themselves need to create

Singularity definition files. In this scenario, we recommend researchers try to find a Dockerfile

29

first and then use the docker2singularity library to convert the Dockerfile into a Singularity

definition file.

Finally, Table 4e presents the qualitative performance evaluation results for Approach 5.

Sciunit has many advantages, such as being the most simple and lightweight of the ten reproducible

approaches considered in this study. In addition, Sciunit is efficient in terms of memory use for

encapsulating modeling environments, workflows, and data into one container. Due to its easy

installation, Sciunit is helpful as an educational setting where instructors can share reproducible

computational materials and students are asked to containerize their own analyses. Thus, it is a

powerful tool for reliable reproducible research without requiring continuous version control.

However, Sciunit is still in active development as a research project and, in our experience for

complicated software with the GRASS GIS system, a dependency of the workflows, it was unable

to automatically encapsulate the system. In other cases, Sciunit, being efficient in what it

encapsulates by monitoring what software is used in a workflow, may exclude related software not

directly used but potentially helpful when extending a workflow (e.g., plotting routines helpful to

visualize model output but not directly used in the encapsulated workflow). This is most often a

benefit, producing a highly optimized container, but requires the modeler to carefully consider and

include all software calls that may be useful in later reuse of the container.

Table 5 highlights the strengths and weaknesses for the five remote reproducibility

approaches. Table 5a includes the qualitative performance evaluation results for Approaches 6 and

7. These approaches allow users to use preconfigured modeling environments; therefore, users

can use environmental models straightforwardly without additional software installation. In

addition, CJW supports distributed HPC resources for parallel computing. Also, CJH supports a

custom Conda VE to permanently install Python or other libraries, like Approach 2. However,

30

there is a limitation with installing new model software because it requires an administrator for

installation into CJH and CJW due to security concerns. Therefore, it takes time to deploy new

software into CJH and CJW because the CJH and CJW development teams need a certain amount

of time to review and deploy the new software on CJH and CJW. Consequently, we recommend

this approach for online education and compute-intensive problem solving (CJW). Table 5b

presents the qualitative performance evaluation results for Approaches 8 and 9. Considering the

main usage of Sciunit, qualitative performance test results are the same as Approach 5, except for

offline use.

Table 5. Qualitative evaluation of the strengths, weaknesses, and recommended usages for the five

remote approaches.
(a) Approaches 6 and 7: Using CJH and CJW with Docker

Strengths

□ [U] The lowest complexity for users, possible to use preconfigured modeling environments

□ [U] Possible to use distributed HPC resources for scalable modelling work (CJW)

□ [U] Possible to install custom Conda VE (CUAHSI JupyterHub)

Weaknesses
□ [U] Impossible to install particular model software or package that uses ‘sudo’ command

□ [D] Requires a certain amount of time to review and deploy a new software by CJH and CJW
development team

Recommended
usages

□ [Education] Online education (CJH and CJW)

□ [Research] Computation- and/or data-intensive problem solving (CJW)
(b) Approaches 8 and 9: Using CJH and CJW with Sciunit

Strengths

□ [D, U] The lowest complexity for reproducibility in both developer and user perspective

□ [U] The most lightweight in 10 reproducible approaches

□ [D, U] Easy to share Sciunit containers in a file format

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install

Weaknesses
□ [U] Niche usage comparing to Docker and Singularity

□ [U] Does not encapsulate automatic allocation of parallel computing such as Dask

Recommended
usages

□ [Research] Reliable reproducibility as Sciunit can containerize all reproducible artifacts into a container
without significant memory use

(c) Approach 10: Using Binder with Docker
Strengths □ [U] Easy to share modeling environments online

Weaknesses □ [U] Non-persistent sessions (automatically shut down if there is no activity for 10 min)
Recommended
usages □ [Education] Online education

 [D] = Developer; [U] = User

31

Finally, Table 5c presents the qualitative performance test results for Approach 10. This

approach allows developers to share modeling environments online with users with a single click.

Also, users can add new software or libraries, though users first need to understand how to edit

Binder configuration files. Despite these conveniences, MyBinder has a limitation in persistent

sessions because it supports these online modeling environments for free. Therefore, if users have

no activity for 10 minutes, the Jupyter modeling environment is automatically shut down without

saving into a persistent data storage. Therefore, we recommend this approach for online education

use cases, but not for more sophisticated research applications unless Binder can be implemented

with persistent data storage. This approach is useful as a preliminary auditing procedure for

research applications to deploy new software or libraries into Docker-based virtual research

environments (Prasad et al., 2020) such as CJH and CJW because both Binder and these

cyberinfrastructures are developed using Docker.

3.2.2 Recommended Approaches for Common Use Cases

Summarizing the qualitative metrics while also drawing on insights from the quantitative

evaluation, we recommend best practices for leveraging containerization and computing

environments to achieve reproducible environmental modeling objectives. These

recommendations are provided in Tables 6 and 7 for the local and remote approaches, respectively.

We considered common use cases in environmental modeling around two broad categories:

education and research. Traditionally, we conduct environmental modeling through classes and

workshops for educational purposes in an “offline” manner that requires installing software on

local computers. However, many educational institutions are transitioning to remote or “online”

compute environments (Prasad et al., 2020). Therefore, we divide the objectives of education into

online and offline. For environmental modeling research, we can generally divide the steps

32

required to perform computational modeling into 1) model installation, 2) model application, and

3) data analysis for data-intensive computations using model-associated files (Addor et al., 2020).

In the case of local approaches (Table 6), Approaches 3 and 5 are recommended for

educational use cases. One reason for this recommendation is because these approaches have low

required competency scores, suggesting they are less complexity to install and configure. Of these

two approaches, Approach 3 may prove a better choice as Docker containerizes every dependency

into Docker images. However, if users want a more lightweight approach to distribute

containerized images without considering version control, Approach 5 that uses Sciunit may be a

preferred choice. For research purposes, especially for model development, Approach 1 is the only

approach to efficiently build new or modified model software source code. Other approaches can

only create a container image using existing model software source code for reproducibility. For

the purpose of model application in research use cases, Approach 2 is recommended because it has

the flexibility to install and apply new Python libraries for various analyses and visualizations. For

data analysis, remote approaches are preferred to local approaches because of the space and time

required for such data-intensive computations within a local environment.

In the case of remote approaches (Table 7), for online education purposes, approaches 6

and 7 are recommended approaches because they offer the lowest required competency scores for

users. These environments support easy sharing via HydroShare and preconfigured modeling

environments. Sciunit also has the lowest required competency; however, because Sciunit needs

to encapsulate dependencies and workflows together, sometimes creating Sciunit containers can

be more difficult compared to other approaches because they can only create a container image

using existing model software source code for reproducibility. For research purposes, especially

for model development, remote approaches are not recommended because source code changes to

33

the core model software are difficult to make in the remote approaches. If the research application

is primarily about performing model runs instead of making changes to the core model software,

then Approach 6 is recommended among the remote approaches because it has the flexibility to

install and apply new Python libraries for various analyses and visualizations. For the purpose of

computationally intensive problem solving, Approach 7 is recommended because it takes

advantage of multiple cores and processors for parallel computing, resulting in a lower runtime.

Table 6. Recommended best practices for reproducible approaches on local environments.
Objectives Best Practices

(a) Education (1) Online
(Class or Workshop) -

(2) Offline
(Class or Workshop)

□ Containerizing All Software with Docker (AP-3) and Sciunit (AP-5)

→ The first (AP-5, score:3) and second (AP-3, score:5) lowest complexity for
users, a more stable approach (AP-3), and the most lightweight artifacts (AP-5)

(b) Research (3) Model
Installation

□ Compiling Model Software (AP-1)

→ The only approach to build new or modified model software source code

(4) Model
 Application

□ Containerizing Core Model Software with Docker (AP-2)

→ Lower complexity than others (AP-2, score:4), flexibility to install and apply
new Python libraries for various analysis and visualization

(5) Computation- and/or
Data-Intensive Problem
Solving

-

Table 7. Recommended best practices for reproducible approaches on remote environments.
Objectives Best Practices

(a) Education (1) Online
(Class or Workshop)

□CJH and CJW with Docker (AP-6 and 7) and Binder with Docker (AP-10)

→ The lowest complexity for users (score:3), a flexible approach, and easy sharing
(2) Offline
(Class or Workshop) -

(b) Research (3) Model
Installation -

(4) Model
Application

□ CJH with Docker (AP-6)

→ Lower complexity than others (AP-6, score:3), flexibility to install and apply
new Python libraries for various analysis and visualization

(5) Computation- and/or
Data-Intensive Problem
Solving

□ CJW with Docker (AP-7)
→ The first fastest computational time, possible to use multiple cores for parallel
computing

34

4. Discussion

4.1 Containerization as a Means for Promoting Open and Collaborative Environmental

Modeling

Containerization-based reproducible approaches are specifically designed to meet the

demanding needs of collaborative model development across varied software and hardware

environments. By adopting containerization, researchers can create container images that

encapsulate models, dependencies, and software configurations, ensuring a unified and

reproducible development environment. This allows multiple researchers or institutions to work

within the same software environment and produce consistent results, regardless of their individual

setups. Containerization also facilitates model portability across different hardware environments,

including local workstations, high-performance computing clusters, and cloud infrastructure. It

offers flexibility for collaborators to utilize their preferred hardware setups while maintaining

compatibility and consistency. Additionally, collaborative model development entails other

aspects such as iterative refining of the model, use of interactive development environments, and

efficient sharing of containers. Some use cases corresponding to these aspects have been explored

in Ahmad et al. (2022) that demonstrated some necessary extensions to containers. Notably,

‘Sciunit-export’ enables a seamless transition between Sciunit and other virtual environments like

Virtual Env and Conda, further enhancing collaborative model development practices.

In the context of environmental modeling, the role of open-source software and open data

in promoting the adoption of reproducible approaches and facilitating collaboration among

researchers in the field of environmental modeling is paramount. Open availability of software and

data reduces duplicated efforts and fosters higher quality science, improves transparency, and

encourages a stronger science-policy boundary (Pfenninger et al., 2017). While there are valid

35

reasons for not openly sharing data and code, such as ethical and security concerns, potential

exposure of flawed code or data, additional workloads, and institutional or personal inertia

(Pfenninger et al., 2017), it is crucial to understand the practicalities and importance of open code

and data. Open practices can be supported through measures like changing attitudes, requesting

data-code-workflow-environments during manuscript review process, initiating intellectual

property rights/licenses, assigning digital object identifiers (DOIs), and establishing distribution

channels for proper recognition. Adhering to these guidelines improves the reproducibility of

modeling results, enabling others to verify and build upon the existing work. In the context of

containerization, standardized practices enhance interoperability among different containerized

models, facilitating their seamless integration into larger scientific workflows and promoting

collaboration among researchers. Notably, there is currently a strong momentum for open-source

data and software across various scientific domains, including geology, energy, climate modeling,

and environmental modeling, extending beyond computer science and data science (Knoth & Nüst,

2017; Fiore et al., 2019; Pfenninger et al., 2017; Morsy et al., 2017; Essawy et al., 2018; Choi et

al., 2021).

4.2 Software Licensing and Security Challenges Associated with Containerization

Containerization approaches like Docker, Singularity, and Sciunit run in the Linux

operating system, which is Free and Open-Source Software (FOSS). If there is proprietary and

licensed software in the Linux operating system, we can consider three specific limitations or

challenges. The first challenge is the possibility of containerizing the software. To containerize the

software, installation of software inside a container requires using containerization configuration

files, such as a dockerfile for Docker and a definition file for Singularity, inside a container. The

second challenge is the possibility of process-based containerization such as Sciunit. Sciunit

36

extracts executed codes to efficiently containerize the software. However, there is a possibility of

access limitations to the software to protect the software. Finally, a limitation is the uses allowed

by the software license and how the software license is implemented. There are many types of

licenses and many implementations of licenses including a distributed offline licensed key, a

network license key, a subscription-based license, etc. For sharing reproducible approaches, every

approach requires an agreement or permission from the owners of the software for any users or

concurrent users. Furthermore, there can be specific limitations or challenges such as license

compliance, cost, technical compatibility, version updates, dependencies etc. For example, the

SUMMA model used in this research is freely accessible under an open-source license, facilitating

its use and modification without licensing restrictions. In contrast, proprietary software like

TUFLOW (Two-dimensional Unsteady FLOW) may require users to obtain a license and

potentially pay fees for certain usage contexts or commercial purposes.

Related to license challenges are security challenges especially when using remote

approaches such as CJW and CJH with Docker, Singularity, and Sciunit for environmental

modeling. Some of these challenges include data leakage, network security, and malicious

containers. To ensure data privacy and integrity, cyberinfrastructures generally use strong

authentication to prevent unauthorized access, update containers and underlying software

regularly, and verify the authenticity and integrity of containers before deployment. For example,

we need to use verified ‘Hydroshare ID’ to use the functionality of CJW and CJH platforms. Also,

developers are unable to install new models in CJH and CJW independently, without undergoing

a review process conducted by the larger CJH and CJW development teams, as mentioned earlier.

Additionally, both CJH and CJW undergo regular maintenance and security measures to safeguard

against potential security threats. By proactively maintaining security, remote environments aim

37

to protect the integrity and privacy of the data and models hosted on their platforms, providing a

secure and reliable environment for researchers and users.

4.3 Opportunities for Future Research

4.3.1 Advancing Sciunit for Environmental Modeling

Sciunit was shown to be lightweight and time-efficient in the reproducible approaches

considered in this study. Sciunit is a tailored environment for geoscience modeling that is still in

active development. In its current implementation, Sciunit containerizes the workflow software

including software and data dependencies into a single container. Other containerization

approaches, such as Docker and Singularity, are aimed at a more general audience but do allow

for the separation of the computational modeling environment from the workflow itself. This

separation allows for more flexibility in applying different data processing workflows based on

containerized computational environments. Sciunit developers are working on adding

functionality that could allow a user to create a Docker image from a Sciunit container (Chuah et

al., 2020). Exploring such approaches to combine lightweight tailored containerization tools that

are specific to domains like environmental modeling, alongside industry standard containerization

approaches like Docker, could provide a power approach for bring containerization technology to

environmental modeling.

4.3.2 Opportunities for Hybrid Containerization

Integrating or developing a hybrid approach that combines the strengths of multiple

containerization tools, like that just described between Sciunit and Docker, is another promising

research direction worth exploring in the future. Such approaches can leverage the advantages of

different containerization technologies to address specific needs and challenges in environmental

modeling and resulting in a flexible and efficient approach for managing and executing

38

containerized applications. By combining tools like Docker, Singularity, Sciunit, and Binder,

researchers can potentially benefit from a wider range of features and capabilities. For example,

Docker is a widely used interface and offers broad community support, while Singularity focuses

on high-performance computing and compatibility with existing HPC systems. Sciunit provides a

lightweight, user-friendly framework for creating and sharing scientific models and assessments

for environmental research, and Binder facilitates the creation of interactive and reproducible

computational environments. A hybrid approach could involve using Docker or Singularity as the

base containerization technology and integrating Sciunit and Binder to enhance model

accessibility, reproducibility, and collaboration. This combination can enable researchers to

package and distribute models using Docker or Singularity, while leveraging the interactive and

reproducible features of Sciunit and Binder for easier model evaluation and sharing. Recently there

has been significant attention given to such an effort. Youngdahl et al. (2018) demonstrated the

use of an automatic hybrid containerization tool called ‘Sciunit-Popper’ for simplifying the

sharing, porting, and reproducing of distributive and iterative experiments. Brown et al. (2019)

utilized a hybrid ‘Docker- Kubernetes’ containerization approach by initially using Docker for

deploying GUI/GPU instances and later transitioning to Kubernetes for scalability, deployment,

and portability. However, the application of such approaches in environmental modeling is still

limited, presenting an opportunity for further research and exploration in the field. In our ongoing

work, we are investigating the potential of running distributed applications using a scheduler like

Kubernetes, which will be a part of our future endeavors.

4.3.3 Automating Containerization and Model Execution using ML and AI

Another challenge requiring future research is automating containerization and model

execution into end-to-end workflows with appropriate resource allocation, scaling, workload

39

balancing, and performance monitoring. Such automation reduces manual effort, automates

decision-making, and improves efficiency. In the current study, even though we presented

guidelines for the best practices for different modeling use cases, optimization of containerization

and model execution processes, potentially automating some aspects of model configuration and

setup are still challenging. Recently, the integration of machine learning (ML) and artificial

intelligence (AI) has shown the potential for code completion using tools like Github copilot and

large language generative models such as ChatGPT (Ouyang et al., 2022). While these tools have

the potential to reduce work and speed up the time required to build end-to-end workflows,

research is needed to explore the opportunities and limitations of ML and AI-based automation in

environmental modeling, given the unique challenges and the importance of process

understanding.

4.3.4 Real-time Software Reconfiguration of Containerized Workflows

Approaches 6 and 7 use a Jupyter interface, which has become a widely used tool for

providing access to preconfigured modeling environments (Prasad et al., 2020). However, such

configurations that rely on Jupyter interfaces can have challenges associated with allowing users

to install new software. Environmental modeling, because of the diversity of models used within

the community, would benefit from approaches that allow for easy configuration of the software

environment behind the Jupyter interface. The “udocker” tool, which is a tool for using Docker

without privileges (Gomes et al., 2018), could be a solution for allowing users to add new model

software to a Docker image to customize the environment for a particular modeling application.

Binder, included in Approach 10, is also a powerful tool to provide customization of remote

modeling environments with Jupyter interfaces. Using an implementation of Binder like MyBinder

is possible now, but being a general environment, it has limitations for environmental modeling.

40

As stated earlier, in its current implementation if users have no activity for 10 min, the MyBinder

user session is automatically shut down. MyBinder sessions on BinderHub are open to anybody,

anywhere, and anytime for free. Therefore, some time limits for BinderHub user session resources

are inevitable to prevent misuse of resources. It is possible to automatically save a session when it

is shut down, which is a partial solution. Building a cyberinfrastructure system to support

environmental modeling that combines BinderHub with more persistent data and compute resource

to support reproducible environmental modeling seems like an especially promising future

research direction.

4.3.5 Education and Training for Reproducible Environmental Modeling

Common across all of the discussed approaches, education and training plays a crucial role

in promoting awareness and effective implementation of reproducibility approaches in

environmental modeling. Part of this education is about the importance and challenges associated

with reproducibility specifically in the context of environmental modeling. Reproducibility of

computational models has long been cited as a challenge due to factors such as model complexity,

size, lack of incentives, focus on novelty, etc. (De Vos et al., 2011). Additionally, the sharing of

open data-code, and well-documented workflows is still optional in the review and publication

process for environmental modeling (Stagge et al., 2019). For one reason, many model developers

and users are either unaware or lack the skills to implement these approaches, which benefit greatly

from a strong knowledge of containerization techniques and computational skills (Stagge et al.,

2019). Scientific cyberinfrastructures like the ones discussed in this paper, HydroShare, CyberGIS

for Water, and CUAHSI Jupyterhub, along with many others are working to overcome these

challenges and lower the barrier to reproducibility. Research is continuing to highlight the

significance of reproducibility in environmental modeling and explore various techniques and

41

methodologies to ensure the production of reproducible results (Morsy et al., 2017; Essawy et al.,

2018; Choi et al., 2021). There are also a growing number of opportunities for technical training

and demonstration of containerization tools and concepts through conferences, workshops, and

training sessions. These efforts aim to ensure that environmental model developers and users are

aware of reproducibility approaches and can effectively implement them in their work, thereby

promoting reproducibility in environmental modeling and related fields.

5. Conclusions

Reproducibility is the cornerstone of science as it allows for accumulating knowledge by

building on prior work. However, many have highlighted the difficulties in achieving reproducible

computational research. For environmental modeling, knowledge gaps in achieving reproducible

computational modeling remain in understanding how to effectively use modern software tools

and practices to achieve this desired outcome. To this aim, we explored ten approaches for

achieving reproducible modeling goals using a combination of different containerization tools on

both local and remote computational environments contrasting developer and user efforts. We

assessed the ten approaches using a hydrologic modeling application against both quantitative and

qualitative metrics. Based on this evaluation, our goal is to establish guidelines for the best

practices for different modeling use cases common in the environmental modeling community.

For use cases where the objective is to develop new environmental models and it is

important to be able to recompile model source code on a frequent basis, Approach 1 as that uses

GNU Make and Conda Virtual Environments may be sufficient, or it may be effective to apply

Approach 5 using Sciunit to containerize the end-to-end modeling workflow for easier

reproducibility and portability. For cases where a given model is applied for a specific system

without changes to the core model source code, we recommend approaches where the core model

42

software is containerized and used locally (e.g., Approach 2) or where users interact with the model

through a JuypyterHub environment, like CUAHSI JupyterHub (Approach 6), assuming the

Dockerized core model software can be uploaded into the JupyterHub environment and made

accessible to end users. Of the ten approaches considered, the CyberGIS-Jupyter for Water

platform (Approach 7) is recommended for computationally intensive applications given that the

platform provides access to high performance and high throughput computational resources, which

resulted in relatively low runtimes in our scenarios. For educational use cases, the recommended

methods are those that take advantage of remote environments with Jupyter interfaces, like

CUAHSI JupyterHub and CyberGIS-Jupyter for Water or use Binder (Approaches 6, 7, and 10),

assuming making changes to the core model software are not part of the learning objective. For

cases where the educational objective includes having students edit or extend the core model

software, then using Sciunit for containerizing the software (Approach 5) is recommended because

it offers a low required competency compared to more general containerization approaches.

While this study considers ten approaches for reproducible environmental modeling, this

is not an exhaustive list and new approaches continue to be introduced. Given our review of these

approaches and considering their relative strengths and weaknesses, we can suggest possible

directions for future research and development. Although the trend of environmental modeling

appears to be moving to remote or cloud computational environments, providing deployment

flexibility of such environments for environmental models remains a challenge. We are

encouraged by approaches like Binder that allow for on-demand creation of remote virtual

environments. A Binder-based environment for environmental modeling that allows for more

persistent sessions and larger data storage solutions could be powerful. Furthermore,

containerization approaches like Sciunit that are tailored for geoscience modeling use cases

43

provide benefits that larger, less tailored containerization technologies (e.g., Docker or Singularity)

cannot provide. However, merging of tailored and industry-standard containerization strategies as

hybrid approaches may be able to harness the strengths of both approaches and provide solutions

for environmental modelers seeking to create more reproducible environmental studies.

Ultimately, these approaches can help to lower the barrier to fostering a “culture of reproducibility”

(Rosenberg et al., 2020) that supports open and collaborative environmental modeling.

Data and Software Availability

The data and computational environments used in this study are available as ten

HydroShare resources and three GitHub repositories. We published all data and computational

environments with persistent digital object identifiers (DOI) on HydroShare and shared them by a

collection resource (HS-1) in HydroShare (Choi et al., 2022). This collection resource provides

the links for all HydroShare resources as “Collection Contents” and three GitHub repositories as

“Related Resource Reference.” The ten HydroShare resources consist of one collection resource,

two composite resources for SUMMA model inputs (HS-2, HS-3), one composite resource for the

Virtual Box image used across the five local approaches (HS-4, Approaches 1~5), four composite

resources for Jupyter notebooks used in the four remote approaches (HS-5~8, Approaches 6~9),

and one composite resource for a Jupyter notebook used to create Figures 3-6 using performance

results (HS-9) and one composite resource for the Singularity image (HS-10). In addition, three

GitHub repositories were created to share Approach 10 and to show how to create a Docker and a

Singularity image for Approach-2, 3, and 4.

List of Relevant URLs

Binder: https://mybinder.org

44

Binder Configuration: https://mybinder.readthedocs.io/en/latest/using/config_files.html

CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org

Docker recipes of CUAHSI JupyterHub: https://github.com/CUAHSI/cuahsi-stacks

CyberGIS-Jupyter for Water: http://go.illinois.edu/cybergis-jupyter-water

Docker recipes of CyberGIS-Jupyter for water: https://github.com/cybergis/Jupyter-

xsede/tree/master/singularity_def

docker2singularity: https://github.com/singularityhub/docker2singularity

Figshare: https://figshare.com

GESIS Notebook: https://notebooks.gesis.org/binder

GitHub: https://github.com

Github copilot: https://github.com/features/copilot/

Google Colab: https://colab.research.google.com

GNU compilers (gfortran): https://gcc.gnu.org/fortran

GNU compilers (GCC): https://gcc.gnu.org

GNU builders (Make): https://www. gnu.org/software/make

HydroShare: https://www.hydroshare.org

Jupyter notebooks for pySUMMA tutorial: https://github.com/arbennett/pysumma-tutorial

Microsoft Azure: https://note books.azure.com

https://github.com/features/copilot/

45

NCAR, National Center for Atmospheric Research, HPC: https://jupyterhub.ucar.edu

Pip: https://pip.pypa.io

pySUMMA: https://github.com/UW-Hydro/pysumma

Python: https://www.python.org

R: https://www.r-project.org

Rivanna, HPC at University of Virginia HPC: https://www.rc.virginia.edu

Sciunit: http://sciunit.run

Singularity Hub: https://singularityhub.com

SUMMA GitHub: https://github.com/NCAR/summa

SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa

Virtual Box: https://www.virtualbox.org

Virtualenv: https://virtualenv.pypa.io

XSEDE, an HPC resource on the Extreme Science and Engineering Discovery Environment,

https://www.xsede.org

Zenodo: https://zenodo.org

Acknowledgments

This work was supported by the United States National Science Foundation under collaborative

grants ICER-1928369, ICER-1928315, OAC-1664061, OAC-1664018, and OAC-1664119. We

acknowledge the work of the Reprobench and HydroShare teams that made this research possible.

46

We also thank Natalie Thompson, and the consultants of the University of Virginia Graduate

Writing Lab for their helpful feedback in preparing the manuscript.

47

References

Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., & Mendoza, P. A. (2020).
Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges.
Hydrological Sciences Journal, 65(5). https://doi.org/10.1080/02626667.2019.1683182

Ahmad, R., Choi, Y. D., Goodall, J. L., Tarboton, D., Nassar, A., & Malik, T. (2022). Improving
reproducibility of geoscience models with Sciunit. Recent Advancement in Geoinformatics
and Data Science, 2558(07). https://doi.org/10.1130/2022.2558(07)

Atmanspacher, H., Bezzola Lambert, L., Folkers, G., & Schubiger, P. A. (2014). Relevance
relations for the concept of reproducibility. Journal of the Royal Society Interface, 11(94).
https://doi.org/10.1098/rsif.2013.1030

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(May 26), 452–454.
https://doi.org/10.1038/533452a

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance and
its Contribution to the Control of Photosynthesis under Different Environmental Conditions.
In Progress in Photosynthesis Research (pp. 221–224). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-017-0519-6_48

Bast, R. (2019). A FAIRer future. Nature Physics. https://doi.org/10.1038/s41567-019-0624-3

Beaulieu-Jones, B. K., & Greene, C. S. (2017). Reproducibility of computational workflows is
automated using continuous analysis. Nature Biotechnology, 35(4).
https://doi.org/10.1038/nbt.3780

Bentaleb, O., Belloum, A. S. Z., Sebaa, A., & El-Maouhab, A. (2022). Containerization
technologies: taxonomies, applications and challenges. Journal of Supercomputing, 78(1),
1144–1181. https://doi.org/10.1007/s11227-021-03914-1

Brown, M., Renambot, L., Long, L., Bargo, T., & Johnson, A. E. (2019). COMPaaS DLV:
Composable infrastructure for deep learning in an academic research environment.
Proceedings - International Conference on Network Protocols, ICNP, 2019-October, 1–2.
https://doi.org/10.1109/ICNP.2019.8888070

Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass‐conservative numerical
solution for the unsaturated flow equation. Water Resources Research, 26(7).
https://doi.org/10.1029/WR026i007p01483

Choi, Y.-D., Goodall, J. L., Sadler, J. M., Castronova, A. M., Bennett, A., Li, Z., et al. (2021).
Toward open and reproducible environmental modeling by integrating online data
repositories, computational environments, and model Application Programming Interfaces.
Environmental Modelling and Software, 135. https://doi.org/10.1016/j.envsoft.2020.104888

Choi, Y., Goodall, J., Nguyen, J., Ahmad, R., Malik, T., Li, Z., et al. (2022). Comparing
Approaches to Achieve Reproducible Computational Modeling for Hydrological and
Environmental Systems, HydroShare.

Chuah, J., Deeds, M., Malik, T., Choi, Y., & Goodall, J. L. (2020). Documenting computing
environments for reproducible experiments. Advances in Parallel Computing,

48

36(September), 756–765. https://doi.org/10.3233/APC200106

Clark, M.P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., et al. (2015).
A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water
Resources Research. https://doi.org/10.1002/2015WR017198

Clark, Martyn P, Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., et al.
(2015). Water Resources Research, 2515–2542. https://doi.org/10.1002/2015WR017198.A

Craig, W., & Victoria., S. (2020). Trust but Verify: How to Leverage Policies, Workflows, and
Infrastructure to Ensure Computational Reproducibility in Publication. Harvard Data Science
Review. https://doi.org/doi.org/10.1162/99608f92.25982dcf

Duan, J., & Miller, N. L. (1997). A generalized power function for the subsurface transmissivity
profile in TOPMODEL. Water Resources Research, 33(11).
https://doi.org/10.1029/97WR02186

Epskamp, S. (2019). Reproducibility and Replicability in a Fast-Paced Methodological World.
Advances in Methods and Practices in Psychological Science, 2(2).
https://doi.org/10.1177/2515245919847421

Essawy, B. T., Goodall, J. L., Zell, W., Voce, D., Morsy, M. M., Sadler, J., et al. (2018). Integrating
scientific cyberinfrastructures to improve reproducibility in computational hydrology:
Example for HydroShare and GeoTrust. Environmental Modelling and Software, 105, 217–
229. https://doi.org/10.1016/j.envsoft.2018.03.025

Essawy, B. T., Goodall, J. L., Voce, D., Morsy, M. M., Sadler, J. M., Choi, Y. D., et al. (2020). A
taxonomy for reproducible and replicable research in environmental modelling.
Environmental Modelling & Software, 104753.
https://doi.org/https://doi.org/10.1016/j.envsoft.2020.104753

Fiore, S., Elia, D., Palazzo, C., Dranca, A., Antonio, F., Williams, D. N., et al. (2019). Towards an
Open (Data) Science Analytics-Hub for Reproducible Multi-Model Climate Analysis at
Scale. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018,
3226–3234. https://doi.org/10.1109/BigData.2018.8622205

Garijo, D., Kinnings, S., Xie, L., Xie, L., Zhang, Y., Bourne, P. E., & Gil, Y. (2013). Quantifying
reproducibility in computational biology: The case of the tuberculosis drugome. PLoS ONE,
8(11). https://doi.org/10.1371/journal.pone.0080278

Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., et al. Toward the
Geoscience Paper of the Future: Best practices for documenting and sharing research from
data to software to provenance, 3 Earth and Space Science § (2016). John Wiley & Sons, Ltd.
https://doi.org/10.1002/2015EA000136

Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M. R., et al. (2020).
FAIR Computational Workflows. Data Intelligence. https://doi.org/10.1162/dint_a_00033

Gomes, J., Bagnaschi, E., Campos, I., David, M., Alves, L., Martins, J., et al. (2018). Enabling
rootless Linux Containers in multi-user environments: The udocker tool. Computer Physics
Communications, 232. https://doi.org/10.1016/j.cpc.2018.05.021

49

Hothorn, T., & Leisch, F. (2011). Case studies in reproducibility. Briefings in Bioinformatics,
12(3), 288–300. https://doi.org/10.1093/bib/bbq084

Hut, R. W., van de Giesen, N. C., & Drost, N. (2017, May). Comment on “Most computational
hydrology is not reproducible, so is it really science?” by Christopher Hutton et al.: Let
hydrologists learn the latest computer science by working with Research Software Engineers
(RSEs) and not reinvent the waterwheel our. Water Resources Research. Blackwell
Publishing Ltd. https://doi.org/10.1002/2017WR020665

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B. (2016). Most computational
hydrology is not reproducible, so is it really science? Water Resources Research, 52(10),
7548–7555. https://doi.org/10.1002/2016WR019285

Jarvis, P. (1976). The interpretation of the variations in leaf water potential and stomatal
conductance found in canopies in the field. Trans. R. Soc. B, 273(927), 593–610.
https://doi.org/10.1098/rstb.1976.0035

Jupyter Project, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., et al. (2018). Binder
2.0 - Reproducible, interactive, sharable environments for science at scale. Proceedings of
the 17th Python in Science Conference, (Scipy), 113–120. https://doi.org/10.25080/majora-
4af1f417-011

Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., & Kunstmann, H. (2018). Joint
atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper
Tana River basin. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-
2050-8

Kery, M. B., Radensky, M., Arya, M., John, B. E., & Myers, B. A. (2018). The story in the
notebook: Exploratory data science using a literate programming tool. In Conference on
Human Factors in Computing Systems - Proceedings (Vol. 2018-April).
https://doi.org/10.1145/3173574.3173748

Kim, Y. M., Poline, J. B., & Dumas, G. (2018). Experimenting with reproducibility: A case study
of robustness in bioinformatics. GigaScience. https://doi.org/10.1093/gigascience/giy077

Knoth, C., & Nüst, D. (2017). Reproducibility and practical adoption of GEOBIA with open-
source software in Docker containers. Remote Sensing, 9(3).
https://doi.org/10.3390/rs9030290

Knuth, D. E. (1984). LITERATE PROGRAMMING. Computer Journal.
https://doi.org/10.1093/comjnl/27.2.97

Kovács, Á. (2017). Comparison of different linux containers. In 2017 40th International
Conference on Telecommunications and Signal Processing, TSP 2017 (Vol. 2017-Janua).
https://doi.org/10.1109/TSP.2017.8075934

Kozhirbayev, Z., & Sinnott, R. O. (2017). A performance comparison of container-based
technologies for the Cloud. Future Generation Computer Systems, 68.
https://doi.org/10.1016/j.future.2016.08.025

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility
of compute. PLoS ONE, 12(5), e0177459. https://doi.org/10.1371/journal.pone.0177459

50

Lampert, D. J., & Wu, M. (2015). Development of an open-source software package for watershed
modeling with the Hydrological Simulation Program in Fortran. Environmental Modelling &
Software, 68, 166–174. https://doi.org/10.1016/J.ENVSOFT.2015.02.018

Laniak, G. F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., et al. (2013). Integrated
environmental modeling: A vision and roadmap for the future. Environmental Modelling &
Software, 39, 3–23. https://doi.org/10.1016/j.envsoft.2012.09.006

de Lusignan, S., & van Weel, C. (2006). The use of routinely collected computer data for research
in primary care: Opportunities and challenges. Family Practice.
https://doi.org/10.1093/fampra/cmi106

McDonnell, B., Ratliff, K., Tryby, M., Wu, J., & Mullapudi, A. (2020). PySWMM: The Python
Interface to Stormwater Management Model (SWMM). Journal of Open Source Software,
5(52). https://doi.org/10.21105/joss.02292

Merkel, D. (2014). Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal, 2014(239), 2.
https://doi.org/10.1097/01.NND.0000320699.47006.a3

Morsy, M. M., Goodall, J. L., Castronova, A. M., Dash, P., Merwade, V., Sadler, J. M., et al.
(2017). Design of a metadata framework for environmental models with an example
hydrologic application in HydroShare. Environmental Modelling and Software, 93, 13–28.
https://doi.org/10.1016/j.envsoft.2017.02.028

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., et al. (2022). Training
language models to follow instructions with human feedback, (NeurIPS). Retrieved from
http://arxiv.org/abs/2203.02155

Peckham, S. D., Hutton, E. W. H., & Norris, B. (2013). A component-based approach to integrated
modeling in the geosciences: The design of CSDMS. Computers & Geosciences, 53, 3–12.
https://doi.org/10.1016/j.cageo.2012.04.002

Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., & Staffell, I. (2017). The importance of open
data and software: Is energy research lagging behind? Energy Policy, 101(November 2016),
211–215. https://doi.org/10.1016/j.enpol.2016.11.046

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational reproducibility.
GigaScience. GigaScience. https://doi.org/10.1186/s13742-016-0135-4

Prasad, C., Nancy, W., Mark, M., & Emre H, B. (2020). Measuring success for a future vision:
Defining impact in science gateways/virtual research environments. Concurrency
Computation Practice and Experience. https://doi.org/10.1002/cpe.6099

Reinecke, R., Trautmann, T., Wagener, T., & Schüler, K. (2022). The critical need to foster
computational reproducibility. Environmental Research Letters, 17(4), 41005.
https://doi.org/10.1088/1748-9326/ac5cf8

Rocklin, M. (2015). Dask: Parallel Computation with Blocked algorithms and Task Scheduling.
In Proceedings of the 14th Python in Science Conference. https://doi.org/10.25080/majora-
7b98e3ed-013

51

Rosenberg, D. E., Filion, Y., Teasley, R., Sandoval-Solis, S., Hecht, J. S., van Zyl, J. E., et al.
(2020). The Next Frontier: Making Research More Reproducible. Journal of Water Resources
Planning and Management, 146(6), 01820002. https://doi.org/10.1061/(ASCE)WR.1943-
5452.0001215

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer
experiments. Statistical Science. https://doi.org/10.1214/ss/1177012413

Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible
Computational Research. PLoS Computational Biology.
https://doi.org/10.1371/journal.pcbi.1003285

Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for
Water Resources Scientists. Water Resources Research.
https://doi.org/10.1029/2018WR022643

Stagge, J. H., Rosenberg, D. E., Abdallah, A. M., Akbar, H., Attallah, N. A., & James, R. (2019).
Assessing data availability and research reproducibility in hydrology and water resources.
Scientific Data, 6, 1–12. https://doi.org/10.1038/sdata.2019.30

That, D. H. T., Fils, G., Yuan, Z., & Malik, T. (2017). Sciunits: Reusable research objects. In
Proceedings - 13th IEEE International Conference on eScience, eScience 2017 (pp. 374–
383). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/eScience.2017.51

Vogel, R. M., Lall, U., Cai, X., Rajagopalan, B., Weiskel, P. K., Hooper, R. P., & Matalas, N. C.
(2015). Hydrology: The interdisciplinary science of water. Water Resources Research, 51(6).
https://doi.org/10.1002/2015WR017049

Volk, J. M., & Turner, M. A. (2019). PRMS-Python: A Python framework for programmatic
PRMS modeling and access to its data structures. Environmental Modelling and Software.
https://doi.org/10.1016/j.envsoft.2019.01.006

De Vos, M. G., Janssen, S. J. C., Van Bussel, L. G. J., Kromdijk, J., Van Vliet, J., & Top, J. L.
(2011). Are environmental models transparent and reproducible enough? MODSIM 2011 -
19th International Congress on Modelling and Simulation - Sustaining Our Future:
Understanding and Living with Uncertainty, (December), 2954–2961.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., et al.
(2016). Comment: The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data. https://doi.org/10.1038/sdata.2016.18

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough
practices in scientific computing. PLoS Computational Biology, 13(6).
https://doi.org/10.1371/journal.pcbi.1005510

Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A., & Wang, S. (2018). CyberGIS-
Jupyter for reproducible and scalable geospatial analytics. Concurrency Computation .
https://doi.org/10.1002/cpe.5040

Youngdahl, A., Yuan, Z., Hai, D., That, T., Malik, T., & Jimenez, I. (2018). Semantically
Organized Containers for Reproducible Research Containers, 1–4.

52

Yuan, Z., Ton That, D., Kothari, S., Fils, G., & Malik, T. (2018). Utilizing Provenance in Reusable
Research Objects. Informatics, 5(1), 14. https://doi.org/10.3390/informatics5010014

	Abstract
	1. Introduction
	2. Methodology
	2.1 The Computational Reproducibility Approaches
	2.1.1 Local Approaches
	2.1.2 Remote Approaches

	2.2 Evaluation of the Approaches
	2.2.1 Modeling Application used for the Evaluation
	2.2.2 Quantitative Performance Metrics
	2.2.3 Qualitative Performance Metrics

	3. Results
	3.1 Quantitative Evaluation
	3.1.1 Required Competency
	3.1.2 Size of Reproducible Artifacts
	3.1.3 Workflow Runtime

	3.2 Qualitative Evaluation
	3.2.1 Strengths and Weaknesses of Approaches
	3.2.2 Recommended Approaches for Common Use Cases

	4. Discussion
	4.1 Containerization as a Means for Promoting Open and Collaborative Environmental Modeling
	4.2 Software Licensing and Security Challenges Associated with Containerization
	4.3 Opportunities for Future Research
	4.3.1 Advancing Sciunit for Environmental Modeling
	4.3.2 Opportunities for Hybrid Containerization
	4.3.3 Automating Containerization and Model Execution using ML and AI
	4.3.4 Real-time Software Reconfiguration of Containerized Workflows
	4.3.5 Education and Training for Reproducible Environmental Modeling

	5. Conclusions
	Data and Software Availability
	List of Relevant URLs
	Acknowledgments
	References

