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Abstract 

Creating online data repositories that follow findable, accessible, interoperable, and reusable 

(FAIR) principles has been a significant focus in the research community to address the 

reproducibility crisis facing many computational fields, including environmental modeling. 

However, less work has focused on another reproducibility challenge: capturing modeling 

software and computational environments needed to reproduce complex modeling workflows. 

Containerization technology offers an opportunity to address this need, and there are a growing 

number of strategies being put forth that leverage containerization to improve the reproducibility 

of environmental modeling. This research compares ten such approaches using a hydrologic model 

application as a case study. For each approach, we use both quantitative and qualitative metrics 

for comparing the different strategies. Based on the results, we discuss challenges and 

opportunities for containerization in environmental modelling and recommend best practices 

across both research and educational use cases for when and how to apply the different 

containerization-based strategies. 

Keywords: Container Technology, Cloud Computing, Reproducibility, Cyberinfrastructure, 

Hydrologic Modeling, Jupyter Notebooks



 

1. Introduction 

The rapid advancement of computing offers both opportunities and challenges for 

reproducibility in computational research (de Lusignan & van Weel, 2006). On the one hand, new 

tools and technologies have made possible complex physical modeling (Kerandi et al., 2018), deep 

learning (Shen, 2018), and interdisciplinary modeling (Laniak et al., 2013; Vogel et al., 

2015). Additionally, with the possible exception of non-deterministic modeling approaches that 

rely on unique random seeds, there is some level of confidence that if the same input data and 

model software are executed on ‘identical machine’, it will result in the same output, even when 

the modeling software is very complicated (Sacks et al., 1989). On the other hand, creating 

“identical machines” including both hardware and software on a machine is very difficult in 

practice. When these computational models are moved to a new machine, modelers often 

experience difficulties reproducing the same model results (Baker, 2016; Essawy et al., 2020; 

Hothorn & Leisch, 2011; Wilson et al., 2017). This is because the way software is packaged, 

installed, and executed on specific hardware to create ‘identical machines’ is often very 

complicated and difficult, even when these steps are well documented (Garijo et al., 2013).  

The rapid evolution of software versions is one key factor that makes computational 

reproducibility so challenging (Epskamp, 2019; Yuan et al., 2018), especially open-source 

software commonly used in many scientific communities. Slight differences in the computational 

environment, including but not limited to software dependencies, can result in unexpected errors 

in re-executing models (Stagge et al., 2019) and can significantly influence the model outputs. As 

a result, researchers have been highlighting the difference between what might be thought of as 

reproducible work such as simply sharing data and workflow documents, and what is, in fact, 
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required for reproducible work: sharing computational environments and automated workflows 

(Beaulieu-Jones & Greene, 2017;  Chuah et al., 2020; Essawy et al., 2020; Kim et al., 2018). 

To overcome what might be called the “reproducibility gap,” researchers have presented 

not only high-level guidelines and principles (Choi et al., 2021; Essawy et al., 2020; Gil et al., 

2016; Wilkinson et al., 2016) but also developed various software tools for specific tasks required 

for computational reproducibility (Kurtzer et al., 2017; Merkel, 2014; That et al., 2017). For 

example, while online repositories that follow FAIR (Findable, Accessible, Interoperable, 

Reusable) guiding principles (Wilkinson et al., 2016) continue to mature, it has led not only to a 

growing demand for sharing well-documented data, source code, software, and workflows, but 

also with software for automatically encapsulating computational environments and workflows 

using containerization and literate programming (Kery et al., 2018; Knuth, 1984).  

These new tools and concepts open the door to applying FAIR guiding principles that are 

inclusive of not just data but also modeling software. For example, Bast (2019) suggested that 

source code management and containerization tools are needed to reproduce the computational 

environments that underly computational models, while Goble et al. (2020) suggested the FAIR 

principles are required for end-to-end workflows to describe the execution of a computational 

process such as data collection, data preparation, data analysis, and data visualization. Researchers 

are beginning to create the cyberinfrastructure needed for such approaches. Reproducibility of 

computational environments and automated workflows have been shown to be critical to filling 

the computational reproducibility gaps in practice (Piccolo & Frampton, 2016; Rosenberg et al., 

2020; Sandve et al., 2013). In hydrology, Hutton et al. (Hutton et al., 2016) recommended an online 

repository to easily find data and source code with unique persistent identifiers and computational 

workflows to describe the precise procedure among data and modeling processes. In addition, Hut 
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et al. (2017) suggested the use of containerization tools and open interfaces to complement the 

preservation of computational environments suggested by Hutton et al. (2016).  

To discuss reproducible computational modeling, it is first important to define and agree 

to the main software components used in environmental modeling studies. In this paper, we 

consider three main software components: 1) the core model software (i.e., what could be thought 

of as the model engine), 2) secondary software needed to support the modeling application (i.e., 

software dependencies and support tools), and 3) modeling workflows that capture the end-to-end 

modeling application (i.e., from data preparation to analysis and visualization of the model output). 

The core model software is often developed using a compiled programming language and is 

optimized for computational performance. The secondary software needed to support the modeling 

application might include a Graphical User Interface (GUI) or an Application Programming 

Interface (API) for creating and analyzing input and output files associated with the core model 

software. Many such model APIs now exist for different environmental models (Choi et al., 2021; 

Lampert & Wu, 2015; B. McDonnell et al., 2020; Volk & Turner, 2019) and offer a powerful way 

of programmatically creating and interacting with the so-called model instances (Morsy et al., 

2017). Finally, modeling workflows are important to capture the entire end-to-end process, using 

model APIs and scripting to link the entire end-to-end process from raw data to publication-ready 

figures. 

Despite progress in understanding and creating more reproducible modeling studies across 

fields, many challenges remain (Reinecke et al., 2022). We argue that a significant reason for these 

remaining challenges is the required level of human expertise to install and configure complicated 

computational modeling setups. Outside of a few well-maintained and often commercial or 

government-backed organizations, many model developers might understand the specific 
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requirements for reproducing their environmental models on other computers, but documenting 

this procedure with enough detail for others to follow can be challenging. The challenge resulting 

from the increased complexity of software systems is not unique to environmental modeling or 

even scientific modeling more generally; it is, in fact, a common problem in software engineering. 

To address this challenge, computer scientists and software engineers have developed 

sophisticated containerization tools to encapsulate complex software as a virtual machine or 

environment (Bentaleb et al., 2022). Therefore, this paper aims to compare various local and 

remote computational approaches to advance reproducible environmental modeling (Hut et al., 

2017; Choi et al., 2021).  

While these containerization tools offer an important opportunity, it can be challenging for 

environmental modelers to know how best to utilize them for different modeling use cases and 

applications. Many containerization approaches exist, and the options for using these approaches 

across different computational environments (e.g., the researcher’s personal computer to remote 

cloud-computing environments) make the advantages and disadvantages of leveraging 

containerization difficult to discern. Thus, the goal of this paper is to compare different local and 

remote computational approaches for advancing reproducible environmental modeling. We 

evaluate ten approaches, in total, using a hydrologic modeling case study leveraging the Structure 

for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a) modeling framework 

and a set of quantitative and qualitative metrics. We discuss the benefits and weaknesses of each 

approach and summarize recommended best practices for using the approaches to achieve different 

modeling objectives. Finally, we discuss remaining knowledge gaps in creating reproducible 

computational models that require future research and development. 
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2. Methodology 

2.1 The Computational Reproducibility Approaches 

The ten computational reproducibility approaches considered in this study are given in 

Table 1. The approaches are first categorized as using primarily local or remote computational 

resources for execution. For the local approaches, a virtual machine (VM) in Virtual Box with 

specifications typical of a personal computer was used for model execution. For the remote 

approaches, each approach leveraged JupyterHub but was implemented using different 

cyberinfrastructures: Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI) JupyterHub, CyberGIS-Jupyter for Water (Yin et al., 2019), and BinderHub to build a 

Jupyter instance from a code repository.  

Table 1. Approaches for computational reproducibility through containerization considered in the 

study. 
Approach  

No. 
Local and Remote 

Computational Environments   
Combination of Software Tools and Modeling Workflows 

  1) Core Model  
Software 

2) Secondary  
Software 

3) Modeling  
Workflow 

1 L 
O 
C 
A 
L 

Virtual Box 

GNU Make Conda Virtual  
Environment Jupyter  

Notebook 
2 Docker 
3 Docker 
4 Singularity 
5 Sciunit 
6 R 

E 
M 
O 
T 
E 

CUAHSI JupyterHub Docker Jupyter  
Notebook 7 CyberGIS-Jupyter for Water Docker 

8 CUAHSI JupyterHub Sciunit 
9 CyberGIS-Jupyter for Water Sciunit 

10 Binder Docker Jupyter Notebook 
 

The second categorization is based on what components of the end-to-end modeling 

workflow are containerized and using which containerization technology. As stated earlier, we 

consider a computational model consisting of three primary software components: 1) the core 

model software, 2) secondary software, and 3) a modeling workflow. Approaches for 
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computational reproducibility through containerization may address one or more of these 

components. Likewise, different containerization technologies exist including Docker, Singularity, 

and Sciunit. We did not test all combinations of component containerization using different 

technologies, but rather we focused on logical combinations, which based on our judgement, 

would most likely be used by environmental modelers. Finally, in the first two cases we used GNU 

Make and a Python-based Virtual Environment (Conda VE) to include approaches commonly used 

by modelers for comparison purposes. While not directly using containerization, these approaches 

represent ways for achieving more portable and reproducible environmental modeling applications 

and represent a meaningful base case for comparison.  

The first five approaches in Table 1 all leverage local computing resources, which means 

a VM on the modeler’s own workstation for running the end-to-end modeling workflow. Approach 

1 represents a standard approach commonly used by modelers (Peckham et al., 2013) in that the 

model software is compiled using GNU Make and the secondary software, written in Python, is 

encapsulated in a Conda VE. Approach 2 introduces formal containerization tools rather than only 

encapsulation, but only for the core model software component using Docker as the 

containerization solution. Approach 3 builds on Approach 2 by using containerization for not only 

the core model software, but also the secondary software supporting the model, again using Docker 

as the containerization tool. Approach 4 further builds on Approach 3 by keeping the same 

containerization strategy but switching the containerization tool from Docker to Singularity. 

Finally, Approach 5 also builds from Approach 3 but uses Sciunit rather than Docker or Singularity 

as the containerization tool. Thus, across these five approaches, we begin from a standard approach 

without direct use of containerization technologies and build to an end-to-end modeling workflow 

leveraging three containerization technologies: Docker, Singularity, and Sciunit.  
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Approaches 6-10 make use of remote computational resources to compute the same end-

to-end modeling workflow. Approach 6 uses the CUAHSI JupyterHub (hereafter CJH), a cloud 

computing environment on the Google Cloud Platform specifically designed to support research 

and education in the water sciences. Approach 7 uses the CyberGIS-Jupyter for Water platform 

(hereafter CJW), a CyberGIS-Jupyter instance tailored to support data-intensive and reproducible 

research in the environmental modeling community built on the Jetstream computational resource 

(Yin et al., 2018). In both approaches, Docker is used as a containerization technology. Approaches 

8 and 9 again use CJH and CJW, respectively, but with Sciunit in place of Docker as the 

containerization tool. Singularity is not typically used in JupyterHub environments (Prasad et al., 

2020), so it was not considered for these approaches. Approach 10 uses a containerization 

approach called Binder that allows users to create a custom JupyterHub instance from a code 

repository using Docker as the containerization technology (Jupyter Project et al., 2018). Further 

detail about the specific procedures and characteristics of each approach is presented in the 

following subsections. 

2.1.1 Local Approaches 

For the five local approaches, we used Virtual Box to create a consistent Linux virtual 

environment (Ubuntu 20.04 LDT) with a Windows operating system and a single-core processor 

(Table 2). We considered this to be a typical personal computer used by modelers, although we 

acknowledge many modelers would have access to workstations with higher end computational 

and memory resources.  
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Table 2. Specification of the base local computational environment 
Specification Descriptions 

Processor  Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 
RAM  15.6 GB 

Base Operating System  Windows 10 
Linux Emulator  VirtualBox 5.2.12 

Linux Operating System  Ubuntu 20.04 LDT 
Number of CPU Cores  1 

 

Figure 1 shows the steps required to complete the five local approaches from the 

perspective of a developer, that is the person setting up the modeling workflow, and the user, that 

is the person executing the workflow for a given input dataset. These steps are used to evaluate 

each approach across a set of metrics which are described later in the paper.  
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Figure 1: The steps required for the five local approaches from the developer and user 

perspectives.  
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As shown in Figure 1a, to set up Approach 1 the developer must complete the following 

steps: 1) create a Makefile; 2) compile and build the core software executable; and 3) share the 

source code and Makefile on an online repository such as GitHub or HydroShare. Next, the Conda 

VE is created to support the secondary software for the modeling workflow. Finally, the Jupyter 

notebooks that document the end-to-end modeling steps are created and shared. Once the end-to-

end model workflow has been captured, the developer’s job is complete, and a user can reproduce 

the modeling study. The steps the user must take to execute Approach 1 are 1) download the source 

code and Makefile for building the environmental model; 2) edit the Makefile to set the paths to 

the configuration files and software dependencies for the environmental model software on the 

user’s computer; and 3) compile and build the executable of core model software. Once these steps 

are complete, the user must download the Jupyter notebooks that document, the end-to-end 

workflow, including installing the required software, downloading model input data, and executing 

the environmental model. Compared to the developer work, the user work is simpler because the 

Jupyter notebooks document the workflow, and the user’s task is focused mainly on compiling the 

core model software and installing secondary software. 

Figure 1b shows the procedure for Approach 2 where the developer must 1) create a 

Dockerfile, which has instructions to download and build software, 2) create a Docker image from 

the Dockerfile, and 3) share the Docker image on an online repository such as the DockerHub. 

This process is often not a linear sequence of steps, but an interactive process where creating the 

Docker image is time-consuming involving testing and verification before the Docker image is 

finally shared. Once this process is complete, however, the user only needs to install Docker using 

the simple command “sudo apt install docker.io” to get the core model operating correctly. The 
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user must still obtain and run the Jupyter notebooks representing the end-to-end workflow, 

including installing required secondary software and input files, before executing the model. 

For Approach 3 (Figure 1c), the developer’s first step is creating Jupyter notebooks to 

containerize workflows into a Docker container. Next, the developer must create a Dockerfile that 

includes the commands needed to containerize the core environmental model software, Python-

based model API, and modeling workflows. In this approach, users only need to install Docker 

and run the Docker image because the Docker image has the required dependencies. Then user can 

open and run the Jupyter notebooks to reproduce the end-to-end workflow. 

In Approach 4 (Figure 1d), the developer will first create a Definition file to create a 

Singularity image that includes a dependency list. Next, the developer must make a “kernel.json” 

file to link a Jupyter kernel with the Singularity image and Jupyter notebooks. Next, the developer 

can share the Singularity image through online repositories including Singularity Hub. Developers 

must also create and share Jupyter notebooks and the model input for the modeling workflows. 

After the developer’s work is complete, the user needs to download the Jupyter notebooks first, 

then open and run the Jupyter notebooks. The Jupyter notebooks handle the rest of the workflow 

including downloading the Singularity image of the core environmental model software, creating 

the Jupyter kernel to establish a link between the Singularity image and Jupyter notebooks, 

downloading the model input data, and executing the environmental model. 

 Finally, in Approach 5 (Figure 1e), the developer first creates a Jupyter notebook to 

encapsulate workflows using Sciunit (Essawy et al., 2018). Next, the developer creates a Sciunit 

container using the programming code and the Jupyter notebook. After that step is complete, the 

developer can share the Sciunit container and the Jupyter notebook. Users then can download the 

Sciunit container and Jupyter notebook and only need to open and run the corresponding Jupyter 
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notebook. Unlike other approaches, users do not need to download the model input as the Sciunit 

container includes the model input and all the software dependencies. 

2.1.2 Remote Approaches 

Figure 2 illustrates the steps required to complete the five remote approaches from the 

perspective of the developer and the user. As with the five local approaches, these steps are used 

to evaluate each approach across a set of metrics that are described later in the paper. 

As Figure 2a shows, for Approaches 6 and 7 the developer must create a Dockerfile, similar 

to Approaches 2 and 3. The user may use GitHub to add a new Dockerfile as a pull request to the 

CJH or CJW GitHub repository. After sending a pull request to the GitHub repository of CJH or 

CJW, the Dockerfile needs to be reviewed by CJH or CJW development team to deploy a new 

Docker image. After finishing the developer’s work, users only need to log into CJH or CJW and 

run Jupyter notebooks because the modeling environments are preconfigured and shared through 

the environmental profiles of CJH or Jupyter kernels of CJW. Figure 2b shows the general 

procedure of Approaches 8 and 9 that follow the same steps as Approach 5 (Figure 1e) using 

Sciunit, so they are not explained further here.  
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Figure 2. The steps required for the five remote approaches from the developer and user 

perspectives.  

Figure 2c shows the general procedure of Approach 10. First, the developer must create a 

configuration file that is supported by Binder to encapsulate the environmental model software 

and Python-based model APIs used by the model. Next, the developer must create Jupyter 
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notebooks to document the modeling workflow. Then, the developer shares the configuration files 

and the Jupyter notebooks through an online repository such as GitHub, Figshare, Zenodo, or 

HydroShare. After that, the developer uses MyBinder to create a remote modeling environment 

for the modeling setup. Finally, the developer can share the Binder URL pointing to the remote 

modeling environment with end-users.  

2.2 Evaluation of the Approaches 

We evaluated the ten approaches (five local and five remote) against a set of quantitative 

and qualitative metrics using a hydrologic modeling study as an example application. In this 

example application, we used the SUMMA (Clark et al., 2015a) hydrologic model as the core 

model software, pySUMMA (Choi et al., 2021) and other Python packages as the secondary 

software, and Jupyter notebooks to orchestrate the end-to-end modeling workflow. These three 

components are described in further detail in the following subsection. We then describe the 

quantitative and qualitative criteria used to evaluate the ten approaches.  

2.2.1 Modeling Application used for the Evaluation 

SUMMA was selected for the evaluation because it represents a typical numerical 

computational model used in environmental studies. It is, in fact, more of a modeling framework 

since it enables the controlled and systematic evaluation of multiple model representations of 

hydrologic processes and scaling behavior through a flexible hierarchical spatial structure. 

SUMMA was developed in Fortran, and we used the Fortran compiler ‘gfortran’ to compile the 

source code. Also, SUMMA requires the NetCDF (Network Common Data Form) and LAPACK 

(Linear Algebra PACKage) libraries. The NetCDF library (libnetcdff.*) supports creating, 

accessing, and sharing data stored in a NetCDF format, the file format used by SUMMA. The 

LAPACK library provides a series of routines for linear algebra operations, including matrix 
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solvers. These libraries are considered core software for the model because they are required for 

the model to be compiled. SUMMA Makefile and Dockerfiles are shared through the SUMMA 

GitHub repository (SUMMA GitHub, 2021) to support compiling SUMMA source code and 

creating a SUMMA Docker image. Also, the created SUMMA Docker image is shared via 

DockerHub (SUMMA DockerHub, 2021). 

Other secondary software, not required to compile SUMMA but convenient for working 

with SUMMA input and output files, includes pySUMMA, a Python-based SUMMA model API. 

pySUMMA allows programmatic control of the model configuration, execution, and visualization 

of SUMMA models. Currently, pySUMMA can be installed from either a Conda command (e.g., 

“conda install –c conda-forge pysumma”) or a pip command (e.g., “pip install pysumma”). Users 

can also download the pySUMMA source code from its pySUMMA GitHub repository and install 

it manually using “environment.yml” for conda install or “setup.py” for pip install. The 

“environment.yml” and “setup.py” files have the lists of pySUMMA dependencies for each 

installation method, thus making it possible to install the pySUMMA environment with 

dependencies on a new machine. 

Finally, for modeling workflows, we used Jupyter notebooks to create modeling workflows 

through a mix of formatted text, mathematical equations, and executable code with in-line 

visualizations. We created Jupyter notebooks for each of the ten reproducible approaches described 

earlier to encapsulate reproducible artifacts and modeling workflows. These notebooks are 

available as products of this research as described in the Data and Software Availability section of 

this paper.  

We used hydrologic modeling experiments described in Clark et al. (2015b) in our 

evaluation. Based on these experiments, we created four scenarios (Table 3) using two datasets to 
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reproduce Figures 7, 8, and 9 in Clark et al. (2015b). The first scenario is a single simulation for 

15 months using the Simple Resistance method, as the stomatal resistance parameterization in 

SUMMA. The second scenario includes nine ensemble simulations for analyzing the impact on 

ET using 1) three different stomatal resistance parameterizations, Simple Resistance, Ball-Berry 

(Ball et al., 1987), and Jarvis (Jarvis, 1976), and 2) three different values (1.0, 0.5, 0.25) of the 

root exponential distribution parameter. The first and second scenarios aim to reproduce Figures 

7 and 8 in Clark et al. (2015b) (included here as Figure A.1). The third scenario is a single 

simulation for 75 months to analyze the impact of using the 1d Richards method (Celia et al., 

1990), which is one of the lateral flow parameterizations in SUMMA, on runoff. The fourth and 

final scenario is three ensemble simulations to analyze the impact of using three different lateral 

flow parameterizations: 1d Richards, Lumped Topmodel, and Distributed Topmodel (Duan & 

Miller, 1997) on runoff. From the third and fourth scenarios, our aim is to reproduce Figure 9 in  

Clark et al. (2015b) (included here as Figure A.2). 

Table 3. SUMMA simulation scenarios for evaluating the ten reproducible approaches. 
Scenario Descriptions 

(a) Scenario 1 
□ A single simulation (simple resistance method) 

□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months) 

(b) Scenario 2 

□ Ensemble simulations (9 simulations) 
- 3 different parameterizations (Simple Resistance, Ball-Berry, and Jarvis)  
  × 3 different parameters (Root Exponential values 1.0, 0.5, 0.25)  
□ Simulation periods: 2006-07-01 ~ 2007-09-30 (15 months) 

(c) Scenario 3 
□ A single simulation (1d Richards) 

□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months) 

(d)   Scenario 4 
□ Ensemble simulations (3 simulations) 

- 3 different parameterizations (1d Richards, Lumped Topmodel, and Distributed Topmodel)  
□ Simulation periods: 2002-07-01 ~ 2008-09-30 (75 months) 

2.2.2 Quantitative Performance Metrics  

The following quantitative measures were used to evaluate the ten approaches. 1) 

Competency considers the level of effort in reproducing each step in the approach and is an 
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important metric for lessening the burden of reproducibility work for researchers (Atmanspacher 

et al., 2014). 2) The size of computational artifacts takes into account the storage requirements for 

storing and sharing each approach, another important factor in the adoption of reproducible 

approaches (Craig & Victoria., 2020; Kovács, 2017). 3) The computational time measures the wall 

time required to execute the approach, which can vary significantly across approaches and impact 

the usability of the approach (Kozhirbayev & Sinnott, 2017).  

For the competency metric, we evaluated the level of skill required to complete each step 

of the approach from both the developer and user perspectives. We defined three levels: Minimal, 

Moderate, and Substantial. Minimal means basic skills are required including downloading, setting 

up, and running the code without any changes in the basic workflow. Moderate means additional 

skills are needed including editing and creating simple codes in the existing workflow. Finally, 

Substantial means requiring expertise in coding and re-configuring the existing workflow. 

In order to given numerical scores to these categories, we scored ‘Minimal Skill’ as an 

integer between 1 and 3, ‘Moderate Skill’ between 4 and 6, and ‘Substantial Skill’ between 7 and 

9. As this was done for each step in an approach and an overall ‘total score’ for the approach was 

calculated as simply the sum of all steps in that approach. Since this scoring can be subjective, we 

had six experts, all co-authors of this paper and knowledgeable of the modeling steps as both users 

and developers, complete the evaluation independently and report the range of scores in the results 

section. The Appendix (Table A.1 – A.7) includes the questionaries used to obtain the competency 

scores for the ten approaches. 

For the size metric, we measured how much space is used to store all digital artifacts 

associated with the reproducible approach. We only considered the size metric for the five local 

approaches and not the five remote approaches because the size of the preconfigured 
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computational artifacts in a remote environment will be determined by the specific technical 

implementation in that remote environment and will have less impact on the end user. Finally, for 

the computational time metric, we measured the execution time across all ten reproducible 

approaches. In this performance metric, we measured the wall time required to run the end-to-end 

workflow for the approach.  

2.2.3 Qualitative Performance Metrics  

In terms of qualitative performance metrics, we first describe the strengths and weaknesses 

of each approach through our experience implementing each approach from both the developer 

and user perspectives. We then considered two broad use cases for environmental models: 1) 

education and 2) research. Based on the strengths and weaknesses and with these two use cases in 

mind, we present recommendations for best practices when using each of the ten approaches. 

3. Results 

3.1 Quantitative Evaluation  

3.1.1 Required Competency 

The resulting competency metric scores, grouped by developer and user work, are shown 

in Figure 3. The boxplot depicts the range of the scores across the experts who rated the 

competency needed to complete each step of each approach. The total score for developer work 

was consistently higher than the user work, indicating that the developer work requires greater 

competency or effort than the user work. This is expected as the competency was defined around 

coding and computing skills rather than modeling skills. Interestingly, there was less variability in 

scores when evaluating the user’s work compared to the developer’s work, meaning there was 

more agreement among those who completed the evaluation about the competency required for 

the user steps. To help visualize the results for each approach, the median scores are depicted in a 
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spider plot (Figure 4) to show how each approach ranks across the developer and user competency 

metric scores.  

Figure 3: Competency metric scores for each approach for the steps completed by the Developer 

(D) and User (U). The box plots represent the range of scores across the six individuals who 

rated the approach. 
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Figure 4: The median competency metric scores for (a) local and (b) remote reproducible 

approaches for the developer and user work. 

In terms of developer work, Approach 1 (Score = 35) was scored as the most complicated 

approach among the local approaches. In this approach, the developer needs to reproduce every 

step individually as it does not use containerization technology. In terms of user work, most 

approaches have a low score compared to Approach 1. Approach 5 was scored as the simplest 

approach from both the developer (Score = 19) and user perspectives (Score = 3). For the remote 

approaches and in terms of developer work, approaches 6 and 7 were judged to require a high level 

of competency. Because Dockerfile must be programmed, it requires a considerable amount of 

knowledge about the Docker platform and its API, it can be a complex task for the model 

developers. Furthermore, for cloud environments like CJH and CJW, developers themselves 

cannot install new models until they are reviewed by the larger CJH and CJW development teams. 

Approaches 8 and 9 were judged to be the simplest approaches considering developer (Score = 19) 

and user work (Score = 3). These approaches used Sciunit which can containerize modeling 

environment and workflow into a container by recording steps in the model execution code created 

with no additional work. This allows users to easily reproduce published results using Sciunit 

containers and commands in a Jupyter notebook. Approaches 6, 7, and 10 are the simpler in part 

because dependencies for the environmental modeling code are preconfigured into containers.  

3.1.2 Size of Reproducible Artifacts 

Figure 5 shows the sizes of the digital artifacts for the five local reproducible approaches. 

Approach 5 is the most lightweight and it is ten times smaller than Approach 4, which is the second 

most lightweight. This is because Sciunit only encapsulates dependencies that are used during 

modeling workflows, compared to other containerization tools that containerize additional 



 

23 
 

software and Python libraries that may be stated for example in a Dockerfile but not directly used 

in the workflow. Sciunit further uses content-based deduplication to determine redundant file 

blocks across files used in a workflow (That et al., 2017; Yuan et al., 2018). In addition, Approach 

4 is lighter weight than Approaches 1-3 because Singularity utilizes a flatter structure for files in 

an image, meaning all files of an image are combined into a single image format and compressed. 

In contrast, Docker uses a concept of layering of files in which files are shared across multiple 

images. The layered file system on disk, however, is not compressed as in Singularity and thus the 

result in Figure 5. We note that currently we have a single model run and layering does not offer 

much space saving but can do so if the developer is using multiple containers. We also anticipate 

that in that case a compressed file system will offer more savings than layering and the overall 

result trend will be the same. This concept used in Docker is not helpful for a single model software 

run, but it will help when researchers want to use multiple commands with layered images. Finally, 

approach 1 and 2 do not use container tools and thus do not take advantage of file system saving 

methods such as compression and deduplication. The sizes required for each of the dependencies 

are given in detail in Table A.8. 

 

Figure 5. Comparison of the size for reproducible artifacts for the local reproducible approaches. 
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3.1.3 Workflow Runtime 

Figure 6 shows the results of the workflow runtime comparison for the approaches using 

(a) local and (b) remote compute resources across the four modeling scenarios described in Table 

3. When we compare the five local approaches; it shows that Approach 5 is slightly slower than 

the other approaches. However, the overall computing time is similar across the five local 

reproducible approaches. For the remote approaches, Approach 7 was the fastest approach even 

though the approach requires additional time to submit jobs between CJW to distributed HPC 

resources and retrieve model output from such resources to CJW. Although there are variations 

according to the status of memory use, the rest of the remote reproducible approaches are similar 

to the local ones. Due to how the model runs were setup using Dask, a Python library for parallel 

computing (Rocklin, 2015), and because Dask automatically allocates multiple cores for ensemble 

simulations, the Sciunit encapsulation of the ensemble simulations (Scenarios 2 and 4) were not 

configured to take advantage of the multiple cores. Hence, the runtime for Scenarios 2 and 4 were 

excluded from the figure 6(a). From the performance test of computing time, for data-intensive 

modeling such as the simulation of fully distributed models and Contiguous United States 

(CONUS) scale models, we can see the value of using remote environments that can access HPC 

resource. 



 

25 
 

 

Figure 6. Comparison of computing time in the (a) local and (b) remote reproducible approaches. 

Overall, if we summarize the result of quantitative performance, we find that the local 

reproducible approaches require more competency in coding and computing skills, more 

computational time, and more space compared to remote ones. For both local and remote 

approaches, the developer work requires a remarkably higher level of effort than the user work. If 

we compare different containerization tools across the local and remote approaches, Docker was 

the heaviest weight and was judged to require greater competency. On the other hand, Sciunit was 

the most lightweight and required less competency to use compared to other containerization tools. 

Finally, Singularity excelled as a containerization approach for parallel computing. It is worth 

noting that the performance of containerization-based approaches can vary based on the type (e.g., 
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hydrologic model SUMMA vs. atmospheric model Weather Research and Forecasting WRF) and 

scale of the environmental model (e.g., local vs. global). For different types of models, the 

challenges lie in model compilation difficulty and the developers' competency. In terms of 

modeling scale, factors such as model complexity and watershed scale come into play, with the 

performance of approaches being influenced by the memory size of the computer used. 

3.2 Qualitative Evaluation  

3.2.1 Strengths and Weaknesses of Approaches 

The strengths and weaknesses of the five local reproducible approaches judged through this 

research are presented in Table 4. For Approach 1 (Table 4a), a strength is that the GNU Make 

tool is a common method to share model software and GNU Make itself is important because 

within each containerization tool GNU Make must be run to build the SUMMA executable. 

However, this approach is still difficult for many model users as it requires a higher level of 

computational competency. Therefore, having the developer with the skills required to complete 

this step and then sharing a containerized version of the model software reduces the burden on the 

model user. 
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Table 4. Qualitative evaluation of the strengths, weaknesses, and recommended usages for the 

local approaches. 

(a) Approach 1: Compiling the Core Model Software 

Strengths 
□ [D, U] GNU Make itself is important because this tool has to use in 10 reproducible approaches 

□ [D] Efficient for model software developers to review and apply their new and modified source code 

Weaknesses □ [U] Difficult to apply Makefile configuration setting for compiling model software 
Recommended 
usages □ [Research] Model software development and management 

(b) Approach 2: Containerizing the Core Model Software with Docker 

Strengths 
□ [U] Easy to download and use Docker images for model software via DockerHub 

□ [U] Efficient to install new Python packages or other libraries for various application research 

Weaknesses □ [U] Unexpected errors may occur when users create Conda VE manually 
Recommended 
usages □ [Research] Model application with flexible application of various Python packages and other libraries 

(c) Approach 3: Containerizing All Software with Docker 

Strengths 

□ [U] Easy to download and use Docker images for environmental modeling via DockerHub 

□ [U] Possible to use all required model software and other software from a Docker image  

□ [U] Stable steps to use environmental models 

Weaknesses □ [U] Limitation to install new model software or other software 
Recommended 
usages □ [Education] Offline education requiring stable and consistent reproducibility  

(d) Approach 4: Containerizing All Software with Singularity 

Strengths 
□ [D] Easy to convert Docker images to Singularity images using docker2singularity library 

□ [U] Lightweight than other reproducible approaches except Sciunit 

Weaknesses □ [U] Niche usage comparing to Docker 
 

Recommended 
usages □ [Research] Models requiring HPC 

(e) Approach 5: Containerizing All Software and Workflow with Sciunit 

Strengths 

□ [D, U] The simplest complexity for reproducibility in both developer and user perspective 

□ [U] The most lightweight in ten reproducible approaches 

□ [D, U] Easy to share Sciunit containers in a file format 

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install 

Weaknesses 
□ [U] Niche usage comparing to Docker and Singularity  

□ [U] Does not encapsulate automatic allocation of parallel computing such as Dask 

Recommended 
usages 

□ [Education] Offline education 

□ [Research] Reliable reproducibility as Sciunit can containerize all reproducible artifacts into a 
container without significant memory use 

  [D] = Developer; [U] = User 
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Table 4b presents the results of the qualitative performance evaluation for Approach 2. 

This approach uses Docker to containerize only the core model software; therefore, users can easily 

reproduce SUMMA using Docker from DockerHub. In addition, users can install and apply new 

Python libraries as model APIs without any limitations. After downloading the SUMMA Docker 

image and installing pySUMMA within a Conda VE, users can execute SUMMA using the 

“docker” option in the pySUMMA “run” method. Even if users have not downloaded the SUMMA 

Docker image on the local computer, pySUMMA can automatically download it from DockerHub. 

However, sometimes when users create the Conda VE, unexpected errors may occur, requiring the 

user to create the Conda VE manually. Therefore, we recommend this approach for model 

applications where the user requires flexibility in what Python packages and other libraries are 

needed to complete the application.  

 Table 4c presents the results of the qualitative performance evaluation for Approach 3.  

This approach containerizes every dependency into a Docker image; therefore, the procedure is 

stable and consistent in that it is unlikely that errors will occur across users. However, there is a 

limitation when attempting to install new software or dependencies because users must work inside 

a Docker image, even if users can install new dependencies, they are temporary. Therefore, this 

approach is helpful for offline education for practicing and reproducing published results on local 

computers (public or personal computers) but is less well suited for use cases that require the 

extension of past work.  

Table 4d presents the qualitative performance evaluation results for Approach 4. It is 

lightweight compared to other reproducibility approaches, except for Sciunit. Currently, 

Singularity is less widely used than Docker, so sometimes researchers themselves need to create 

Singularity definition files. In this scenario, we recommend researchers try to find a Dockerfile 
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first and then use the docker2singularity library to convert the Dockerfile into a Singularity 

definition file.  

Finally, Table 4e presents the qualitative performance evaluation results for Approach 5. 

Sciunit has many advantages, such as being the most simple and lightweight of the ten reproducible 

approaches considered in this study. In addition, Sciunit is efficient in terms of memory use for 

encapsulating modeling environments, workflows, and data into one container. Due to its easy 

installation, Sciunit is helpful as an educational setting where instructors can share reproducible 

computational materials and students are asked to containerize their own analyses. Thus, it is a 

powerful tool for reliable reproducible research without requiring continuous version control. 

However, Sciunit is still in active development as a research project and, in our experience for 

complicated software with the GRASS GIS system, a dependency of the workflows, it was unable 

to automatically encapsulate the system. In other cases, Sciunit, being efficient in what it 

encapsulates by monitoring what software is used in a workflow, may exclude related software not 

directly used but potentially helpful when extending a workflow (e.g., plotting routines helpful to 

visualize model output but not directly used in the encapsulated workflow). This is most often a 

benefit, producing a highly optimized container, but requires the modeler to carefully consider and 

include all software calls that may be useful in later reuse of the container.  

Table 5 highlights the strengths and weaknesses for the five remote reproducibility 

approaches. Table 5a includes the qualitative performance evaluation results for Approaches 6 and 

7.  These approaches allow users to use preconfigured modeling environments; therefore, users 

can use environmental models straightforwardly without additional software installation. In 

addition, CJW supports distributed HPC resources for parallel computing. Also, CJH supports a 

custom Conda VE to permanently install Python or other libraries, like Approach 2. However, 
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there is a limitation with installing new model software because it requires an administrator for 

installation into CJH and CJW due to security concerns. Therefore, it takes time to deploy new 

software into CJH and CJW because the CJH and CJW development teams need a certain amount 

of time to review and deploy the new software on CJH and CJW. Consequently, we recommend 

this approach for online education and compute-intensive problem solving (CJW). Table 5b 

presents the qualitative performance evaluation results for Approaches 8 and 9. Considering the 

main usage of Sciunit, qualitative performance test results are the same as Approach 5, except for 

offline use. 

Table 5. Qualitative evaluation of the strengths, weaknesses, and recommended usages for the five 

remote approaches. 
(a) Approaches 6 and 7: Using CJH and CJW with Docker 

Strengths 

□ [U] The lowest complexity for users, possible to use preconfigured modeling environments 

□ [U] Possible to use distributed HPC resources for scalable modelling work (CJW) 

□ [U] Possible to install custom Conda VE (CUAHSI JupyterHub) 

Weaknesses 
□ [U] Impossible to install particular model software or package that uses ‘sudo’ command 

□ [D] Requires a certain amount of time to review and deploy a new software by CJH and CJW 
development team 

Recommended 
usages 

□ [Education] Online education (CJH and CJW) 

□ [Research] Computation- and/or data-intensive problem solving (CJW) 
(b) Approaches 8 and 9: Using CJH and CJW with Sciunit  

Strengths 

□ [D, U] The lowest complexity for reproducibility in both developer and user perspective 

□ [U] The most lightweight in 10 reproducible approaches 

□ [D, U] Easy to share Sciunit containers in a file format 

□ [D, U] Possible to use Sciunit on local and remote environments after installing it using pip install 

Weaknesses 
□ [U] Niche usage comparing to Docker and Singularity 

□ [U] Does not encapsulate automatic allocation of parallel computing such as Dask 

Recommended 
usages 

□ [Research] Reliable reproducibility as Sciunit can containerize all reproducible artifacts into a container 
without significant memory use 

(c) Approach 10: Using Binder with Docker 
Strengths □ [U] Easy to share modeling environments online 

Weaknesses □ [U] Non-persistent sessions (automatically shut down if there is no activity for 10 min) 
Recommended 
usages □ [Education] Online education 

   [D] = Developer; [U] = User 
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Finally, Table 5c presents the qualitative performance test results for Approach 10.  This 

approach allows developers to share modeling environments online with users with a single click. 

Also, users can add new software or libraries, though users first need to understand how to edit 

Binder configuration files. Despite these conveniences, MyBinder has a limitation in persistent 

sessions because it supports these online modeling environments for free. Therefore, if users have 

no activity for 10 minutes, the Jupyter modeling environment is automatically shut down without 

saving into a persistent data storage. Therefore, we recommend this approach for online education 

use cases, but not for more sophisticated research applications unless Binder can be implemented 

with persistent data storage. This approach is useful as a preliminary auditing procedure for 

research applications to deploy new software or libraries into Docker-based virtual research 

environments (Prasad et al., 2020) such as CJH and CJW because both Binder and these 

cyberinfrastructures are developed using Docker. 

3.2.2 Recommended Approaches for Common Use Cases 

Summarizing the qualitative metrics while also drawing on insights from the quantitative 

evaluation, we recommend best practices for leveraging containerization and computing 

environments to achieve reproducible environmental modeling objectives. These 

recommendations are provided in Tables 6 and 7 for the local and remote approaches, respectively. 

We considered common use cases in environmental modeling around two broad categories: 

education and research. Traditionally, we conduct environmental modeling through classes and 

workshops for educational purposes in an “offline” manner that requires installing software on 

local computers. However, many educational institutions are transitioning to remote or “online” 

compute environments (Prasad et al., 2020). Therefore, we divide the objectives of education into  

online and offline. For environmental modeling research, we can generally divide the steps 
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required to perform computational modeling into 1) model installation, 2) model application, and 

3) data analysis for data-intensive computations using model-associated files (Addor et al., 2020).  

In the case of local approaches (Table 6), Approaches 3 and 5 are recommended for 

educational use cases. One reason for this recommendation is because these approaches have low 

required competency scores, suggesting they are less complexity to install and configure. Of these 

two approaches, Approach 3 may prove a better choice as Docker containerizes every dependency 

into Docker images. However, if users want a more lightweight approach to distribute 

containerized images without considering version control, Approach 5 that uses Sciunit may be a 

preferred choice. For research purposes, especially for model development, Approach 1 is the only 

approach to efficiently build new or modified model software source code. Other approaches can 

only create a container image using existing model software source code for reproducibility. For 

the purpose of model application in research use cases, Approach 2 is recommended because it has 

the flexibility to install and apply new Python libraries for various analyses and visualizations. For 

data analysis, remote approaches are preferred to local approaches because of the space and time 

required for such data-intensive computations within a local environment.  

In the case of remote approaches (Table 7), for online education purposes, approaches 6 

and 7 are recommended approaches because they offer the lowest required competency scores for 

users. These environments support easy sharing via HydroShare and preconfigured modeling 

environments. Sciunit also has the lowest required competency; however, because Sciunit needs 

to encapsulate dependencies and workflows together, sometimes creating Sciunit containers can 

be more difficult compared to other approaches because they can only create a container image 

using existing model software source code for reproducibility. For research purposes, especially 

for model development, remote approaches are not recommended because source code changes to 
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the core model software are difficult to make in the remote approaches. If the research application 

is primarily about performing model runs instead of making changes to the core model software, 

then Approach 6 is recommended among the remote approaches because it has the flexibility to 

install and apply new Python libraries for various analyses and visualizations. For the purpose of 

computationally intensive problem solving, Approach 7 is recommended because it takes 

advantage of multiple cores and processors for parallel computing, resulting in a lower runtime. 

Table 6. Recommended best practices for reproducible approaches on local environments. 
Objectives Best Practices 

(a) Education (1) Online  
(Class or Workshop) - 

(2) Offline 
(Class or Workshop) 

□ Containerizing All Software with Docker (AP-3) and Sciunit (AP-5) 

→ The first (AP-5, score:3) and second (AP-3, score:5) lowest complexity for 
users, a more stable approach (AP-3), and the most lightweight artifacts (AP-5) 

(b) Research (3) Model 
Installation 

□ Compiling Model Software (AP-1)  

→ The only approach to build new or modified model software source code 

(4) Model 
 Application 

□ Containerizing Core Model Software with Docker (AP-2) 

→ Lower complexity than others (AP-2, score:4), flexibility to install and apply 
new Python libraries for various analysis and visualization 

(5) Computation- and/or 
Data-Intensive Problem 
Solving 

- 

 

Table 7. Recommended best practices for reproducible approaches on remote environments.  
Objectives Best Practices 

(a) Education (1) Online 
(Class or Workshop) 

□CJH and CJW with Docker (AP-6 and 7) and Binder with Docker (AP-10) 

→ The lowest complexity for users (score:3), a flexible approach, and easy sharing  
(2) Offline 
(Class or Workshop) - 

(b) Research (3) Model 
Installation - 

(4) Model     
Application 

□ CJH with Docker (AP-6) 

→ Lower complexity than others (AP-6, score:3), flexibility to install and apply 
new Python libraries for various analysis and visualization 

(5) Computation- and/or 
Data-Intensive Problem 
Solving 

□ CJW with Docker (AP-7)  
→ The first fastest computational time, possible to use multiple cores for parallel 
computing 
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4. Discussion 

4.1 Containerization as a Means for Promoting Open and Collaborative Environmental 

Modeling 

Containerization-based reproducible approaches are specifically designed to meet the 

demanding needs of collaborative model development across varied software and hardware 

environments. By adopting containerization, researchers can create container images that 

encapsulate models, dependencies, and software configurations, ensuring a unified and 

reproducible development environment. This allows multiple researchers or institutions to work 

within the same software environment and produce consistent results, regardless of their individual 

setups. Containerization also facilitates model portability across different hardware environments, 

including local workstations, high-performance computing clusters, and cloud infrastructure. It 

offers flexibility for collaborators to utilize their preferred hardware setups while maintaining 

compatibility and consistency. Additionally, collaborative model development entails other 

aspects such as iterative refining of the model, use of interactive development environments, and 

efficient sharing of containers. Some use cases corresponding to these aspects have been explored 

in Ahmad et al. (2022) that demonstrated some necessary extensions to containers. Notably, 

‘Sciunit-export’ enables a seamless transition between Sciunit and other virtual environments like 

Virtual Env and Conda, further enhancing collaborative model development practices. 

In the context of environmental modeling, the role of open-source software and open data 

in promoting the adoption of reproducible approaches and facilitating collaboration among 

researchers in the field of environmental modeling is paramount. Open availability of software and 

data reduces duplicated efforts and fosters higher quality science, improves transparency, and 

encourages a stronger science-policy boundary (Pfenninger et al., 2017). While there are valid 
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reasons for not openly sharing data and code, such as ethical and security concerns, potential 

exposure of flawed code or data, additional workloads, and institutional or personal inertia 

(Pfenninger et al., 2017), it is crucial to understand the practicalities and importance of open code 

and data. Open practices can be supported through measures like changing attitudes, requesting 

data-code-workflow-environments during manuscript review process, initiating intellectual 

property rights/licenses, assigning digital object identifiers (DOIs), and establishing distribution 

channels for proper recognition. Adhering to these guidelines improves the reproducibility of 

modeling results, enabling others to verify and build upon the existing work. In the context of 

containerization, standardized practices enhance interoperability among different containerized 

models, facilitating their seamless integration into larger scientific workflows and promoting 

collaboration among researchers. Notably, there is currently a strong momentum for open-source 

data and software across various scientific domains, including geology, energy, climate modeling, 

and environmental modeling, extending beyond computer science and data science (Knoth & Nüst, 

2017; Fiore et al., 2019; Pfenninger et al., 2017; Morsy et al., 2017; Essawy et al., 2018; Choi et 

al., 2021). 

4.2 Software Licensing and Security Challenges Associated with Containerization 

Containerization approaches like Docker, Singularity, and Sciunit run in the Linux 

operating system, which is Free and Open-Source Software (FOSS). If there is proprietary and 

licensed software in the Linux operating system, we can consider three specific limitations or 

challenges. The first challenge is the possibility of containerizing the software. To containerize the 

software, installation of software inside a container requires using containerization configuration 

files, such as a dockerfile for Docker and a definition file for Singularity, inside a container. The 

second challenge is the possibility of process-based containerization such as Sciunit. Sciunit 
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extracts executed codes to efficiently containerize the software. However, there is a possibility of 

access limitations to the software to protect the software. Finally, a limitation is the uses allowed 

by the software license and how the software license is implemented. There are many types of 

licenses and many implementations of licenses including a distributed offline licensed key, a 

network license key, a subscription-based license, etc. For sharing reproducible approaches, every 

approach requires an agreement or permission from the owners of the software for any users or 

concurrent users. Furthermore, there can be specific limitations or challenges such as license 

compliance, cost, technical compatibility, version updates, dependencies etc. For example, the 

SUMMA model used in this research is freely accessible under an open-source license, facilitating 

its use and modification without licensing restrictions. In contrast, proprietary software like 

TUFLOW (Two-dimensional Unsteady FLOW) may require users to obtain a license and 

potentially pay fees for certain usage contexts or commercial purposes. 

Related to license challenges are security challenges especially when using remote 

approaches such as CJW and CJH with Docker, Singularity, and Sciunit for environmental 

modeling. Some of these challenges include data leakage, network security, and malicious 

containers. To ensure data privacy and integrity, cyberinfrastructures generally use strong 

authentication to prevent unauthorized access, update containers and underlying software 

regularly, and verify the authenticity and integrity of containers before deployment. For example, 

we need to use verified ‘Hydroshare ID’ to use the functionality of CJW and CJH platforms. Also, 

developers are unable to install new models in CJH and CJW independently, without undergoing 

a review process conducted by the larger CJH and CJW development teams, as mentioned earlier. 

Additionally, both CJH and CJW undergo regular maintenance and security measures to safeguard 

against potential security threats. By proactively maintaining security, remote environments aim 
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to protect the integrity and privacy of the data and models hosted on their platforms, providing a 

secure and reliable environment for researchers and users. 

4.3 Opportunities for Future Research 

4.3.1 Advancing Sciunit for Environmental Modeling 

Sciunit was shown to be lightweight and time-efficient in the reproducible approaches 

considered in this study. Sciunit is a tailored environment for geoscience modeling that is still in 

active development. In its current implementation, Sciunit containerizes the workflow software 

including software and data dependencies into a single container. Other containerization 

approaches, such as Docker and Singularity, are aimed at a more general audience but do allow 

for the separation of the computational modeling environment from the workflow itself. This 

separation allows for more flexibility in applying different data processing workflows based on 

containerized computational environments. Sciunit developers are working on adding 

functionality that could allow a user to create a Docker image from a Sciunit container (Chuah et 

al., 2020). Exploring such approaches to combine lightweight tailored containerization tools that 

are specific to domains like environmental modeling, alongside industry standard containerization 

approaches like Docker, could provide a power approach for bring containerization technology to 

environmental modeling.  

4.3.2 Opportunities for Hybrid Containerization 

Integrating or developing a hybrid approach that combines the strengths of multiple 

containerization tools, like that just described between Sciunit and Docker, is another promising 

research direction worth exploring in the future. Such approaches can leverage the advantages of 

different containerization technologies to address specific needs and challenges in environmental 

modeling and resulting in a flexible and efficient approach for managing and executing 



 

38 
 

containerized applications. By combining tools like Docker, Singularity, Sciunit, and Binder, 

researchers can potentially benefit from a wider range of features and capabilities. For example, 

Docker is a widely used interface and offers broad community support, while Singularity focuses 

on high-performance computing and compatibility with existing HPC systems. Sciunit provides a 

lightweight, user-friendly framework for creating and sharing scientific models and assessments 

for environmental research, and Binder facilitates the creation of interactive and reproducible 

computational environments. A hybrid approach could involve using Docker or Singularity as the 

base containerization technology and integrating Sciunit and Binder to enhance model 

accessibility, reproducibility, and collaboration. This combination can enable researchers to 

package and distribute models using Docker or Singularity, while leveraging the interactive and 

reproducible features of Sciunit and Binder for easier model evaluation and sharing. Recently there 

has been significant attention given to such an effort. Youngdahl et al. (2018) demonstrated the 

use of an automatic hybrid containerization tool called ‘Sciunit-Popper’ for simplifying the 

sharing, porting, and reproducing of distributive and iterative experiments. Brown et al. (2019) 

utilized a hybrid ‘Docker- Kubernetes’ containerization approach by initially using Docker for 

deploying GUI/GPU instances and later transitioning to Kubernetes for scalability, deployment, 

and portability. However, the application of such approaches in environmental modeling is still 

limited, presenting an opportunity for further research and exploration in the field. In our ongoing 

work, we are investigating the potential of running distributed applications using a scheduler like 

Kubernetes, which will be a part of our future endeavors. 

4.3.3 Automating Containerization and Model Execution using ML and AI  

Another challenge requiring future research is automating containerization and model 

execution into end-to-end workflows with appropriate resource allocation, scaling, workload 
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balancing, and performance monitoring. Such automation reduces manual effort, automates 

decision-making, and improves efficiency. In the current study, even though we presented 

guidelines for the best practices for different modeling use cases, optimization of containerization 

and model execution processes, potentially automating some aspects of model configuration and 

setup are still challenging. Recently, the integration of machine learning (ML) and artificial 

intelligence (AI) has shown the potential for code completion using tools like Github copilot and 

large language generative models such as ChatGPT (Ouyang et al., 2022). While these tools have 

the potential to reduce work and speed up the time required to build end-to-end workflows, 

research is needed to explore the opportunities and  limitations of ML and AI-based automation in 

environmental modeling, given the unique challenges and the importance of process 

understanding.  

4.3.4 Real-time Software Reconfiguration of Containerized Workflows 

Approaches 6 and 7 use a Jupyter interface, which has become a widely used tool for 

providing access to preconfigured modeling environments (Prasad et al., 2020). However, such 

configurations that rely on Jupyter interfaces can have challenges associated with allowing users 

to install new software. Environmental modeling, because of the diversity of models used within 

the community, would benefit from approaches that allow for easy configuration of the software 

environment behind the Jupyter interface. The “udocker” tool, which is a tool for using Docker 

without privileges (Gomes et al., 2018), could be a solution for allowing users to add new model 

software to a Docker image to customize the environment for a particular modeling application. 

Binder, included in Approach 10, is also a powerful tool to provide customization of remote 

modeling environments with Jupyter interfaces. Using an implementation of Binder like MyBinder 

is possible now, but being a general environment, it has limitations for environmental modeling. 
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As stated earlier, in its current implementation if users have no activity for 10 min, the MyBinder 

user session is automatically shut down. MyBinder sessions on BinderHub are open to anybody, 

anywhere, and anytime for free. Therefore, some time limits for BinderHub user session resources 

are inevitable to prevent misuse of resources. It is possible to automatically save a session when it 

is shut down, which is a partial solution. Building a cyberinfrastructure system to support 

environmental modeling that combines BinderHub with more persistent data and compute resource 

to support reproducible environmental modeling seems like an especially promising future 

research direction.  

4.3.5 Education and Training for Reproducible Environmental Modeling 

Common across all of the discussed approaches, education and training plays a crucial role 

in promoting awareness and effective implementation of reproducibility approaches in 

environmental modeling. Part of this education is about the importance and challenges associated 

with reproducibility specifically in the context of environmental modeling. Reproducibility of 

computational models has long been cited as a challenge due to factors such as model complexity, 

size, lack of incentives, focus on novelty, etc. (De Vos et al., 2011). Additionally, the sharing of 

open data-code, and well-documented workflows is still optional in the review and publication 

process for environmental modeling (Stagge et al., 2019). For one reason, many model developers 

and users are either unaware or lack the skills to implement these approaches, which benefit greatly 

from a strong knowledge of containerization techniques and computational skills (Stagge et al., 

2019). Scientific cyberinfrastructures like the ones discussed in this paper, HydroShare, CyberGIS 

for Water, and CUAHSI Jupyterhub, along with many others are working to overcome these 

challenges and lower the barrier to reproducibility. Research is continuing to highlight the 

significance of reproducibility in environmental modeling and explore various techniques and 
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methodologies to ensure the production of reproducible results (Morsy et al., 2017; Essawy et al., 

2018; Choi et al., 2021). There are also a growing number of opportunities for technical training 

and demonstration of containerization tools and concepts through conferences, workshops, and 

training sessions. These efforts aim to ensure that environmental model developers and users are 

aware of reproducibility approaches and can effectively implement them in their work, thereby 

promoting reproducibility in environmental modeling and related fields. 

5. Conclusions 

Reproducibility is the cornerstone of science as it allows for accumulating knowledge by 

building on prior work. However, many have highlighted the difficulties in achieving reproducible 

computational research. For environmental modeling, knowledge gaps in achieving reproducible 

computational modeling remain in understanding how to effectively use modern software tools 

and practices to achieve this desired outcome. To this aim, we explored ten approaches for 

achieving reproducible modeling goals using a combination of different containerization tools on 

both local and remote computational environments contrasting developer and user efforts. We 

assessed the ten approaches using a hydrologic modeling application against both quantitative and 

qualitative metrics. Based on this evaluation, our goal is to establish guidelines for the best 

practices for different modeling use cases common in the environmental modeling community.  

For use cases where the objective is to develop new environmental models and it is 

important to be able to recompile model source code on a frequent basis, Approach 1 as that uses 

GNU Make and Conda Virtual Environments may be sufficient, or it may be effective to apply 

Approach 5 using Sciunit to containerize the end-to-end modeling workflow for easier 

reproducibility and portability. For cases where a given model is applied for a specific system 

without changes to the core model source code, we recommend approaches where the core model 
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software is containerized and used locally (e.g., Approach 2) or where users interact with the model 

through a JuypyterHub environment, like CUAHSI JupyterHub (Approach 6), assuming the 

Dockerized core model software can be uploaded into the JupyterHub environment and made 

accessible to end users. Of the ten approaches considered, the CyberGIS-Jupyter for Water 

platform (Approach 7) is recommended for computationally intensive applications given that the 

platform provides access to high performance and high throughput computational resources, which 

resulted in relatively low runtimes in our scenarios. For educational use cases, the recommended 

methods are those that take advantage of remote environments with Jupyter interfaces, like 

CUAHSI JupyterHub and CyberGIS-Jupyter for Water or use Binder (Approaches 6, 7, and 10), 

assuming making changes to the core model software are not part of the learning objective. For 

cases where the educational objective includes having students edit or extend the core model 

software, then using Sciunit for containerizing the software (Approach 5) is recommended because 

it offers a low required competency compared to more general containerization approaches. 

While this study considers ten approaches for reproducible environmental modeling, this 

is not an exhaustive list and new approaches continue to be introduced. Given our review of these 

approaches and considering their relative strengths and weaknesses, we can suggest possible 

directions for future research and development. Although the trend of environmental modeling 

appears to be moving to remote or cloud computational environments, providing deployment 

flexibility of such environments for environmental models remains a challenge. We are 

encouraged by approaches like Binder that allow for on-demand creation of remote virtual 

environments. A Binder-based environment for environmental modeling that allows for more 

persistent sessions and larger data storage solutions could be powerful. Furthermore, 

containerization approaches like Sciunit that are tailored for geoscience modeling use cases 
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provide benefits that larger, less tailored containerization technologies (e.g., Docker or Singularity) 

cannot provide. However, merging of tailored and industry-standard containerization strategies as 

hybrid approaches may be able to harness the strengths of both approaches and provide solutions 

for environmental modelers seeking to create more reproducible environmental studies. 

Ultimately, these approaches can help to lower the barrier to fostering a “culture of reproducibility” 

(Rosenberg et al., 2020) that supports open and collaborative environmental modeling. 

Data and Software Availability 

The data and computational environments used in this study are available as ten 

HydroShare resources and three GitHub repositories. We published all data and computational 

environments with persistent digital object identifiers (DOI) on HydroShare and shared them by a 

collection resource (HS-1) in HydroShare (Choi et al., 2022). This collection resource provides 

the links for all HydroShare resources as “Collection Contents” and three GitHub repositories as 

“Related Resource Reference.” The ten HydroShare resources consist of one collection resource, 

two composite resources for SUMMA model inputs (HS-2, HS-3), one composite resource for the 

Virtual Box image used across the five local approaches (HS-4, Approaches 1~5), four composite 

resources for Jupyter notebooks used in the four remote approaches (HS-5~8, Approaches 6~9), 

and one composite resource for a Jupyter notebook used to create Figures 3-6 using performance 

results (HS-9) and one composite resource for the Singularity image (HS-10). In addition, three 

GitHub repositories were created to share Approach 10 and to show how to create a Docker and a 

Singularity image for Approach-2, 3, and 4. 

List of Relevant URLs 

Binder: https://mybinder.org 
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Binder Configuration: https://mybinder.readthedocs.io/en/latest/using/config_files.html 

CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org 

Docker recipes of CUAHSI JupyterHub: https://github.com/CUAHSI/cuahsi-stacks 

CyberGIS-Jupyter for Water: http://go.illinois.edu/cybergis-jupyter-water 

Docker recipes of CyberGIS-Jupyter for water: https://github.com/cybergis/Jupyter-

xsede/tree/master/singularity_def 

docker2singularity: https://github.com/singularityhub/docker2singularity 

Figshare: https://figshare.com 

GESIS Notebook: https://notebooks.gesis.org/binder 

GitHub: https://github.com 

Github copilot: https://github.com/features/copilot/ 

Google Colab: https://colab.research.google.com 

GNU compilers (gfortran):  https://gcc.gnu.org/fortran 

GNU compilers (GCC):  https://gcc.gnu.org 

GNU builders (Make): https://www. gnu.org/software/make 

HydroShare: https://www.hydroshare.org 

Jupyter notebooks for pySUMMA tutorial: https://github.com/arbennett/pysumma-tutorial 

Microsoft Azure: https://note books.azure.com 

https://github.com/features/copilot/
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NCAR, National Center for Atmospheric Research, HPC: https://jupyterhub.ucar.edu 

Pip: https://pip.pypa.io 

pySUMMA: https://github.com/UW-Hydro/pysumma 

Python: https://www.python.org 

R: https://www.r-project.org 

Rivanna, HPC at University of Virginia HPC: https://www.rc.virginia.edu 

Sciunit: http://sciunit.run 

Singularity Hub: https://singularityhub.com 

SUMMA GitHub: https://github.com/NCAR/summa 

SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa 

Virtual Box: https://www.virtualbox.org 

Virtualenv: https://virtualenv.pypa.io 

XSEDE, an HPC resource on the Extreme Science and Engineering Discovery Environment, 

https://www.xsede.org 

Zenodo: https://zenodo.org 
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