
Integrated Modeling within a Hydrologic Information System: An

OpenMI Based Approach

Anthony M. Castronovaa, Jonathan L. Goodalla, Mehmet B. Ercana

aDepartment of Civil and Environmental Engineering
University of South Carolina

300 Main Street, Columbia, South Carolina 29208 USA

Abstract

This paper presents a prototype software system for integrated environmental modeling

that provides interoperability between the Consortium of Universities for the Advancement

of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS) and the Open

Modeling Interface (OpenMI). The primary motivation for making these two systems inter-

operable is that the CUAHSI HIS has a primary focus on hydrologic data management and

visualization while the OpenMI has a primary focus on integrated environmental modeling.

By combining the two systems into a single software application, it is possible to create

an integrated environmental modeling environment that scientists and engineers can use

to understand and manage environmental systems. Using standards to achieve the steps

required to find, gather, integrate, and analyze hydrologic data allows for a wide community

of groups to participate because it establishes key rules and protocols that must be followed

in order to add to the overarching system. The key contribution of this work, therefore,

is an investigation of two standards in the community and exploring ways to provide in-

teroperability between them. HydroModeler is a software implementation of our work and

provides an OpenMI-compliant modeling environment embedded within the CUAHSI HIS

HydroDesktop software system. We describe the design and implementation of this proto-

type software system, and then present an example application in which evapotranspiration

is modeled using OpenMI components that consume HIS time series data for input. Finally,

we conclude with a summary of our experience exploring the potential for interoperability

between data and modeling systems, and suggest ways in which future development can

1

This is an Accepted Manuscript of an article published in Environmental Modelling and
Software in 2013 available online: http://dx.doi.org/10.1016/j.envsoft .2012.02.011

better facilitate connections between the various subsystems needed within an integrated

environmental modeling system.

Keywords: Integrated Modeling, Data Management, Systems Analysis, Environmental

Management

1. Introduction1

Environmental management often requires both observations and models to answer pol-2

icy questions and to address potential or current problems. It is therefore important to3

consider approaches for using data management systems in combination with models to4

study environmental systems. While there are many examples of data management and5

modeling systems as separate tools (Syvitski et al, 2004; Moore and Tindall, 2005; Kralisch6

et al, 2005), there are fewer examples of integrated systems capable of handling both of7

these activities (Argent et al, 2009). Furthermore, the general trend toward standardization8

in both the data and modeling communities suggests a path forward for combining existing9

tools that are built from established data transmission and communication standards. This10

integration would allow for a broad community of individuals and groups to contribute to11

an environmental management system.12

This paper focuses on two existing technologies, the Consortium of Universities for the13

Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS)14

and the Open Modeling Interface (OpenMI), and explores how they can be combined to15

create a complete environmental management system. The CUAHSI HIS has been developed16

with the goal of enhancing access to hydrologic data (Maidment, 2008; Tarboton et al, 2009).17

Concurrent to this effort, the Open Modeling Interface (OpenMI) Association has developed18

a standard to facilitate model coupling and a reference Software Development Kit (SDK) for19

implementing the standard (Moore and Tindall, 2005; Gregersen et al., 2007). Because the20

two systems were developed by independent groups, there is no formal mechanism for using21

both the HIS and the OpenMI together. However, the systems share important similarities22

that make interoperability possible, as demonstrated in this paper.23

The objective of this research is to explore how interoperability between the CUAHSI HIS24

Preprint submitted to Environmental Modelling & Software February 7, 2012

and the OpenMI can be achieved, and then to use this knowledge to design and prototype25

a software application that demonstrates system interoperability. The prototype software26

application, named HydroModeler, is an integrated environmental modeling environment27

implemented as a plug-in to the CUAHSI HydroDesktop software system (Ames et al.,28

2009) in order to allow for OpenMI-compliant modeling within the HIS. HydroModeler29

supports any OpenMI-compliant (Microsoft .NET Framework 4.0) model and enables users30

to create model configurations where data is supplied by the HIS into simulations and,31

likewise, data can be written back from a simulation into a local data repository. This data32

interoperability is possible using two new OpenMI components, a database reader and a33

database writer. Furthermore, this functionality enables other HydroDesktop tools to work34

with model output. For example, the HydroDesktop charting and mapping views provide35

temporal and spatial visualization capabilities for model outputs.36

In the following section we provide further background on the CUAHSI HIS and OpenMI37

to familiarize the reader with these two technologies. We then present our approach for in-38

tegrating the HIS and OpenMI, including a summary of the challenges encountered and a39

discussion of alternative approaches considered. We next present HydroModeler as a proto-40

type application that provides the ability to build and execute OpenMI model configurations41

that leverage HIS data. An example study is then used to showcase how these systems can42

be applied to model a hydrologic process. This example study demonstrates a small piece of43

what could be a much larger environmental or cross-disciplinary model. Finally, we conclude44

with a summary of the research results and a brief discussion of future research plans.45

2. Background46

2.1. CUAHSI Hydrologic Information System (HIS)47

The HIS can be viewed as three separate but interconnected subsystems: HydroServer,48

HIS Central, and HydroDesktop (Figure 1)(Tarboton et al, 2009). HydroServer is a data49

sharing tool provided as part of the CUAHSI HIS software stack (Horsburgh et al., 2009).50

It includes a database schema, known as the Observations Data Model (ODM), for storing51

3

observational time series (Horsburgh et al., 2008). In a HydroServer, an ODM database is52

exposed using the WaterOneFlow web service Application Programming Interface (API),53

and software tools are provided for managing time series data within an ODM database54

(Tarboton et al, 2009). HIS Central is a metadata catalog that enables search across dis-55

tributed HIS data. It includes an ontology and controlled vocabulary to mediate semantic56

heterogeneity across multiple data providers. In basic terms, the ontology provides the57

structure needed to integrate disparate systems (i.e. data from different sources) and the58

controlled vocabulary establishes the precise language needed for inter-system communica-59

tion (Gruber, 2009). Lastly, the HydroDesktop is a desktop application that enables end60

users to search, download, and analyze hydrologic data available through HIS Central (Ames61

et al., 2009). It utilizes a back-end database with a schema similar to the ODM for storing62

observation data on the user’s local machine. The HydroDesktop Graphical User Interface63

(GUI) is built on an open source Geographic Information System (GIS) platform named64

MapWindow GIS (Ames et al., 2008) that allows for the extension of core functionality65

through plug-in software. Plug-in extensions can be developed in the C# (Microsoft .NET66

Framework 4.0) programming language using a HydroDesktop plug-in interface standard.67

HydroModeler is one such plug-in extension that adds integrated modeling capabilities to68

HydroDesktop.69

The CUAHSI HIS follows a service oriented architecture (Curbera et al., 2002; Huhns70

and Singh, 2005) because each of the three systems described in Figure 1 are interconnected71

by web services (Tarboton et al, 2009). Hydrologic data is stored in databases throughout72

the world and are exposed on the Internet using web service standards (Goodall et al., 2008;73

Tarboton et al, 2009). The HydroDesktop application, for example, obtains metadata from74

the HIS Central system using web services to identify available datasets. A second set of75

web services, called WaterOneFlow, are used to obtain these datasets from specific instances76

of HydroServers, or any other database that is exposed using the HIS web service standards77

(Horsburgh et al., 2009). This design principle allows the overall HIS architecture to be open78

and extensible. For example, third party applications that require access to hydrologic data79

can communicate directly with HIS Central or HydroServer systems, using their respective80

4

web services. Moreover, a model can obtain input data directly from a HydroServer, rather81

than using the graphical HydroDesktop application to prepare input files (e.g. Billah and82

Goodall, 2011).83

2.2. Open Modeling Interface (OpenMI)84

The OpenMI is a standard that defines how models exchange data during a simulation85

run (Moore and Tindall, 2005). It is accompanied by a reference Software Development Kit86

(SDK) that provides tools for implementing the standard to perform integrated environmen-87

tal modeling (Gregersen et al., 2007). This research uses OpenMI version 1.4, the current88

release during the time that the majority of the research was conducted. The OpenMI89

standard consists of interfaces that can be used to couple models so that they are able to90

seamlessly exchange data during run time. For example, an integrated modeling effort may91

require coupling watershed, river hydraulics, and groundwater models, as shown in Figure92

2. The OpenMI enables such models to be coupled and exchange data necessary to simulate93

system interactions and dependencies. This approach enables each model to maintain its94

own identity so that the model can also run independently as well as within a larger sys-95

tem. Therefore, the OpenMI can be described as a loose integration software architecture96

(Gregersen et al., 2007) and is in contrast to tight integration approaches where the models97

are combined into a single system (e.g. Yu et al, 2006; Maxwell et al., 2007; Ahrends et al,98

2008). Loose integration implies that models are coupled in a “plug-and-play” manner,99

such that it is possible to reconfigure how they interact without recompiling the source code100

(Argent, 2004). While the OpenMI was designed to couple large legacy models for envi-101

ronmental management, it is also possible to create configurations from new components102

created for research purposes (Bulatewicz et al., 2009; Castronova and Goodall, 2010). One103

of the most attractive features of component-based modeling is that specific parts of a model104

system can be interchanged to test their individual impact. This aspect in particular makes105

the approach useful for scientific research and instruction.106

The OpenMI concept of a linkable component can be used to couple models, databases,107

web services, file directories, or any other resource that needs to share data with external108

5

components during a model simulation. Authoring and executing a component-based model109

is mediated by a configuration editor (Gregersen et al., 2007). The OpenMI Association110

offers a Standard Development Kit (SDK) that includes a basic configuration editor, called111

the OpenMI Configuration Editor (OmiED). This editor follows the “request-and-reply”112

communication paradigm defined by the OpenMI standard to achieve system integration113

(Gregersen et al., 2007). When using a component-based approach, the modeler defines a114

model configuration that specifies how components within the system are linked together.115

For example, a forcing variable such as precipitation might be stored within a database and116

made available to a rainfall/runoff model as a boundary condition, with OmiED orches-117

trating the data transfer between the database and model. The advantage of modeling a118

hydrologic system in this manner is that, once the coupling has been defined, each compo-119

nent can evolve separately from other components within the system as long as the standard120

interface specification is maintained (Argent, 2004).121

3. Proposed Solution to HIS/OpenMI Interoperability122

There are many similarities between the HIS and OpenMI. For example, just as the123

WaterOneFlow web services define a standard interface for describing and accessing data124

repositories, the OpenMI defines a standard interface for describing and executing models.125

Likewise, just as the OpenMI includes an object model for communicating data between126

components, the HIS also includes an object model to communicate time series observations127

between clients and servers. Despite these similarities, the two technologies were designed128

independently and therefore have no formal means for interoperability. One of the key goals129

in this research is to understand how these two technologies can be combined to create an130

environment able to support both the data and modeling needs of integrated environmental131

modeling.132

3.1. Challenges in Achieving Interoperability133

Specific challenges in achieving interoperability between the HIS and OpenMI include134

inconsistencies in how each system organizes spatiotemporal data, and describes variable135

6

and geospatial objects. We found that the most fundamental disconnect is that the HIS is136

constructed around a time series data model (one location, one variable, many observations137

through time) while the OpenMI at version 1.4 is constructed around a time slice data model138

(multiple locations, one variable, one time). This difference is likely a result of the intended139

purpose for each system. The HIS was built to share observational data (Maidment, 2008),140

which are typically collected at one monitoring station over a time period. The OpenMI141

was built to enable model coupling on a time-step basis (Moore and Tindall, 2005). Each142

model exchanges boundary condition data, which are estimates of a variable at a moment in143

time over some spatial domain. Overcoming this difference in data organization is possible,144

but adds complexity to an interoperability solution. OpenMI version 2.0 includes changes145

that move OpenMI away from a pure model integration standard and closer to a general146

system integration and workflow environment. We anticipate that this change will simplify147

the connection between the CUAHSI HIS time series data model and the OpenMI time slice148

data model, although future implementation work with OpenMI version 2.0 will need to be149

conducted before drawing any conclusions.150

This challenge of differences in how OpenMI and CUAHSI HIS organize spatiotemporal151

data can be seen in their respective data models. A summarized view of the data models152

for each system is shown in Figure 3. Although abbreviated, this figure illustrates the most153

significant concepts that must be translated between the two data models. An OpenMI154

component is built using the ILinkableComponent interface, which defines the model’s com-155

putational engine (Gregersen et al., 2007). Furthermore, it must communicate data during156

a simulation run, such as exchange items, that include element sets, units, and quantities.157

These OpenMI data exchange objects have similar counterparts in the HIS, although there is158

not a direct mapping between the two data models. For example, the fundamental OpenMI159

concept for data communicated among components during simulation is the exchange item160

(Gregersen et al., 2007). Because of this, it must clearly express not only the data values be-161

ing transferred, but also metadata including the spatial and variable properties of the values.162

The most similar HIS concept is the data theme. A data theme is described by a collection163

of data series which define observations of a specific variable at a specific location over some164

7

period of time. However, a theme is not necessarily limited to a single variable, hence a165

direct mapping between the OpenMI concept of an exchange item and the HIS concept of a166

data theme will not always be appropriate. There are other examples where there is a clear167

mapping between HIS and OpenMI concepts. For example, HIS variable and unit objects168

clearly map to the OpenMI quantity and unit objects. Moreover, an OpenMI element set169

object can be defined using the HIS sites object. These mappings are summarized in Table170

1 and are discussed in more detail in Section 5.171

While a direct mapping between all OpenMI and HIS concepts does not exist, it is172

possible to provide interoperability by making some assumptions. For example, storing173

model simulation data in the HIS data model is not straight forward, again because the HIS174

was designed to store time series observations at specific locations. Model simulations usually175

consist of several data series that differ based on model run. Currently the HIS does not have176

a formal method for distinguishing between multiple data series having the same variable and177

site metadata, but differ in terms of their simulation run. This disconnect can temporarily178

be solved by assuming that each model run can be represented as a different “Method” in179

ODM terminology (Horsburgh et al., 2008), however this is not a complete solution as the180

Method is intended to represent data collection methods and not necessary model scenario181

runs. This example and others like it show that, while the data model presented by the HIS182

can be expressed in terms of OpenMI objects, it requires some assumptions to do so and183

ideally would require extention of the HIS database schemas for storing model output data.184

3.2. Proposed Approach185

Our solution to achieving interoperability between the CUAHSI HIS and the OpenMI186

is to wrap the HydroDesktop database as an OpenMI-compliant component. This enables187

the database to serve as a resource to other OpenMI components within a configuration.188

Two new OpenMI components were developed to achieve this integration: DbReader and189

DbWriter. The first component, DbReader, searches the HydroDesktop database for time-190

series data and then translates them into OpenMI exchange item objects that can serve as191

input to models. By default, these OpenMI exchange items will utilize the HIS controlled192

8

vocabulary (Tarboton et al, 2009). The second component, DbWriter, translates one or more193

OpenMI exchange item objects into time series that can be stored within the HydroDesktop194

database. Care must be taken to utilize the HIS controlled vocabulary whenever possible in195

order to remain consistent with other HIS data stored within the HydroDesktop database.196

By writing data back to the HydroDesktop database, it becomes available to other tools,197

including map-based and time series-based visualization tools. HydroModeler provides an198

environment within the HIS architecture enabling loosely integrated modeling capabilities199

using OpenMI model components, such as the DbReader and DbWriter. The design and200

implementation of the HydroModeler, DbReader, and DbWriter software are described in201

Section 4.202

3.3. Alternative Designs Considered203

Our proposed solution to achieving interoperability between the HIS and OpenMI is the204

result of a series of alternative approaches that were explored through this research. Our205

first design was to “wrap” the HIS web services as OpenMI-compliant components. Using206

this approach, which we named HydroLink, the OpenMI component connected directly to207

the HIS so that it would retrieve data from the web services whenever data was requested by208

another component. While an intuitive solution to the problem, the approach was hindered209

by performance issues because some WaterOneFlow services can take several seconds to210

return a data request. We believe that this is still a viable solution for some use cases,211

in particular when real-time data is required by a model or when a web service has been212

optimized to reduce latency on data requests. However, the hurdles that were encountered213

suggested that the approach was not ideal for most scenarios.214

The next approach explored was to add data caching logic to HydroLink so that the215

OpenMI component wrapped a directory of time series files stored in the Water Markup216

Language (WaterML), the format used for data exchange in the CUAHSI HIS (Tarboton217

et al, 2009). At first, the component was programmed to look for locally cached data when218

requested by another OpenMI component. If data was not available, it would invoke the219

HIS web services to automatically download the requested data and cache it for subsequent220

9

data requests. The idea was inspired by web browsers which are intelligent about how web221

pages are requested or cached on client machine, a design feature aimed at providing the222

most responsive result for end users. Another benefit of the caching approach was that223

the downloaded directory of WaterML files provided a clear documentation of the input224

data need to run a particular model. The modeler could easily view these files using other225

applications and edit them to fill data gaps or replace erroneous values.226

While the data caching approach was an adequate technical solution to the problem by227

combining both the data gathering and data input steps into a single component, the source228

for information was not always clear as it fed into models. Therefore we felt it necessary to229

divide the overall workflow of gathering and using data for modeling into three distinct steps:230

(1) gathering, (2) preparation, and (3) input to models. For the data gathering task, a new231

tool was created that made batch data requests using the HIS WaterOneFlow web services232

and downloaded a WaterML file for each request into a local directory. This tool, named233

FetchWaterML, used a simple CSV file as input to specify a list of time series in the HIS234

that the user would like to download. The locally stored data could then be pre-processed235

if necessary, and supplied to models using the HydroLink component.236

Our current solution improved on the previous approach by leveraging HydroDesktop237

for performing the data gathering and data preparation steps. Because HydroDesktop is238

built on an open source GIS software system, it is able to provide a user-friendly Graphical239

User Interface (GUI) that better facilitates spatial data searching and visualization. With240

the introduction of HydroDesktop, the concept of caching WaterML files was replaced with241

a SQLite database for storing the responses from WaterOneFlow web service calls. This242

SQLite database is based on the ODM schema and is used to store time-series observations243

on the user’s local machine. The component for reading data from the HIS for input to244

models, HydroLink, was modified to instead read from the SQLite database behind Hy-245

droDesktop. Along with this change in functionality, the HydroLink component was also246

renamed to DbReader to be more consistent with its role within the HydroDesktop system.247

HydroModeler was introduced at this time as a plug-in to HydroDesktop to provide an248

embedded environment for OpenMI model building. Finally, DbWriter was introduced as249

10

a means for writing model output data into the SQLite database so that the data can be250

visualized with HydroDesktop tools.251

4. Software Implementation252

The HydroModeler was built from the open source OpenMI Editor (OmiED), which253

is available from the OpenMI Association in the Standard Development Kit (SDK). This254

editor was modified to integrate with the CUAHSI Hydrologic Information System (HIS)255

HydroDesktop application via the plug-in interface. HydroDesktop, which was described in256

Section 2, is the primary client application for the HIS and is aimed at providing a mech-257

anism for discovering, harvesting, and manipulating observation data (Ames et al., 2009).258

Data is retrieved from HIS WaterOneFlow web services and is stored in a SQLite database259

repository on the local machine. This local repository is then accessible to any HydroDesktop260

plug-ins, including HydroModeler, using an Application Programming Interface (API). The261

HydroModeler relies on the original functionality of the OmiED, such as the ability to build262

and execute OpenMI model compositions. Reusing this core functionality enabled develop-263

ment efforts to focus on integrating the OpenMI model simulation with the HydroDesktop264

application.265

Two OpenMI components were designed and prototyped with the aim of facilitating266

the input and output of data between models and the observation database behind Hy-267

droDesktop: DbReader and DbWriter. A key step in creating the DbReader component268

was understanding how and when to extract information from the HydroDesktop database.269

Likewise, the DbWriter requires a low-level understanding of how and when to extract data270

from an OpenMI model and write it to the HydroDesktop database. Database reading271

and writing operations can cause performance issues if not done efficiently, so a key design272

approach was to ensure that this was done in an efficient matter. The design and implemen-273

tation for the DbReader and DbWriter components are described following the description274

of the HydroModeler Graphical User Interface (GUI).275

11

4.1. Graphical User Interface276

The HydroModeler Graphical User Interface (GUI) is divided into four main controls: the277

Browser window, Properties window, Composition window, and the Ribbon toolbar (Figure278

4). The Browser window operates similar to a conventional file browser where the user can279

navigate to find model components or compositions on their local machine. The window280

automatically filters to show only relevant files: OpenMI-compliant models (*.omi exten-281

sion) and compositions (*.opr extension). The Properties window automatically populates282

the metadata for a model component or composition when it is selected from the Browser283

window. For example, when a composition is selected, the details about the various models284

that comprise that composition are shown. Furthermore, individual model metadata can be285

edited and saved directly from the Properties window. Having this functionality embedded286

within the HydroModeler aids in identifying exchange item mismatches and enables users287

to modify simulation-based parameters such as start time, end time, and time step.288

The Composition window is used to create and execute a linked configuration of model289

components. Model components or compositions can be added to this window by dragging290

and dropping them from the Browser window or by using the Ribbon toolbar functional-291

ity. Once models have been added to the composition window, the user can establish links292

between them to create a custom model configuration. Functionality such as linking com-293

ponents is supplied by the underlying OpenMI SDK libraries. The Ribbon toolbar provides294

a collection of buttons, menus, and dialog boxes for building and running model composi-295

tion. Its main function is to provide a user friendly and centralized location for the various296

operations available from HydroModeler.297

4.2. DbReader Component298

The DbReader component was designed to read observation data from the underlying299

HydroDesktop database and supply it to a model simulation. To achieve this, the DbReader300

must be versatile so that it works regardless of the contents of the database. For example,301

exchange items cannot be predetermined as is typically done for OpenMI model components;302

instead they are populated from the database during component initialization. Because of303

12

this, the DbReader must read data from the HydroDesktop database in two phases. First,304

it extracts metadata to discover all available exchange items in the database. Then, after a305

link is connected to one of its output exchange items, it reads the actual time series values306

into memory. This two step approach reduces the resource footprint by ensuring that extra307

data series are not loaded into memory. This level of functionality requires the OpenMI308

ILinkableComponent interface rather than the SDK’s IEngine or Simple Model Wrapper309

(SMW) (Castronova and Goodall, 2010), which are designed for wrapping legacy models310

and creating process-level components, respectively. Figure 5 illustrates the functionality of311

the DbReader separated into three parts: the Initialize method, the Add Link method, and312

the Get Values method.313

The Initialize method is called immediately after the component is loaded into a con-314

figuration. The DbReader creates output exchange items based on the themes stored in315

the HydroDesktop database at this time. To do this, data must be extracted and reor-316

ganized to conform with the OpenMI exchange item data model. SQL queries are used317

to obtain theme descriptors for all data series stored in the HydroDesktop database. Us-318

ing the “ThemeID”, additional information is extracted from the local database: “Vari-319

ableName,” “VariableCode,” “ThemeName,” “ThemeDescription,” “SeriesID,” “Latitude,”320

“Longitude,” “UnitsAbbreviation,” “ConversionFactor,” “Offset,” etc. Finally, this infor-321

mation is mapped to the OpenMI data model to form exchange items (Table 1). These322

exchange items are then exposed to other components so that linkages can be formed using323

the HydroModeler composition window controls.324

When a link is established between the DbReader and another component, an event is325

raised. This event calls the Add Link method that first obtains theme information stored326

on the link. Next, these descriptors are used to query the database for specific data series327

values. The data values are then stored in a buffer (Oatc.SmartBuffer) along with their328

corresponding date-times. Finally, this buffer is associated with a specific “LinkID,” so that329

it can be retrieved when values are requested across the corresponding link. This process is330

repeated every time a link is established between the DbReader and any other component.331

Once completed, the DbReader is ready for model simulation.332

13

During model simulation, components request values from the DbReader by calling its333

Get Values method. When this occurs, the correct data buffer is selected using the known334

“LinkID.” The data buffer is then filtered to find the values corresponding to the requested335

time. If values are found, they are returned to the requesting component. If not, they can be336

interpolated using OpenMI DataOperations on the known values. Once the appropriate data337

has been selected, it may also be necessary to perform a spatial interpolation if the input338

and output element sets are misaligned. To execute a spatial interpolation, the DbReader339

leverages the Element Mapper class (Oatc.ElementMapper) supplied in the OpenMI SDK.340

Values are mapped based on a user selected algorithm (nearest neighbor, inverse distance341

weighting, etc.). Once completed, an array of values are returned to the requesting compo-342

nent. Additionally, unit conversions are performed on-the-fly using auxiliary fields stored343

in the HydroDesktop Unit Conversions data table. These fields are used to populate the344

exchange item object (Table 1) so that the OpenMI SDK libraries can be used to automate345

this process of converting mismatched units between components.346

4.3. DbWriter Component347

The DbWriter component was developed for saving model simulation results into the Hy-348

droDesktop database. The development goal for this component was to seamlessly retrieve349

data from model components during a simulation run and write them to the underlying350

HydroDesktop database. Doing so enables modelers to view, edit, and manage simulation351

results using HydroDesktop plug-in tools. The implementation of this component is divided352

into four main methods (Figure 6): Initialize, Add Link, Data Changed, and Finish.353

During model initialization, the DbWriter must discover what data will be stored in354

the database and prepare itself for extracting this data during the model simulation. The355

challenge is that the output exchange items are not known until links have been established.356

Therefore, the DbWriter component builds a generic input exchange item that can be used to357

store any component’s output data. Additionally, it reads into memory optional metadata358

fields that are supplied in its *.omi file. These fields represent information that is not359

available during run time. For example, the modeler is recommended to specify fields for the360

14

HydroDesktop “Source” table, to document who performed the simulation. Furthermore, the361

HydroDesktop “Method Description” field is used to distinguish between various simulation362

runs. Lacking such functionality would result in major issues during model calibration.363

Currently the fields that comprise the HydroDesktop “Method” table, are the only way to364

distinguish between multiple model simulations in the database, and represent a shortcoming365

that is addressed in Section 6.366

Once the DbWriter and other models are successfully loaded, the user can define links367

between model outputs and these generic inputs. Every time an output exchange item is368

linked to the DbWriter, an event is raised that results in the Add Link method being called.369

The Add Link method performs a series of tasks. First, it subscribes to listener events. These370

listener events are raised when specific OpenMI methods are called by other components.371

For example, an event is raised whenever a data exchange is made between two components.372

By subscribing to these events, the DbWriter can retrieve data values from a component373

immediately after it completes a time step of simulation. Next, metadata is extracted from374

the link and is used to define the data theme. This theme information is used to query375

the database and extract additional information to populate a HydroDesktop data model376

object. The data model is used to store time series values in a specific structure. It consists377

of various parameters including variable, time unit, variable unit, measurement method,378

measurement source, etc. These parameters must be populated carefully to ensure that the379

resulting data object is compliant with HIS’s controlled vocabulary. Once these parameters380

have been defined, a site object must be constructed. The HydroDesktop site object consists381

of many spatial parameters, some of which must be retrieved from the underlying SQLite382

database. Finally, the data model is stored locally to be used during the run time phase of383

simulation.384

During model simulation, the DbWriter waits for a data exchange to occur. Every data385

exchange will raise an event which subsequently calls the DbWriter’s Data Changed method.386

This method first retrieves metadata from the link on which the data transfer occurred.387

The metadata is used to identify the theme of the data that was transferred. Using this388

information, the DbWriter requests the values from the component that triggered the event389

15

by calling the corresponding Get Values method. This approach allows the DbWriter to390

retrieve data from components in a non-obtrusive manner. Next, these values are added391

to their respective data series within the data model object. This information is kept in392

memory until the model simulation has completed. It is implemented this way to avoid393

excessive write operations on the database, which can hinder performance.394

After model simulation, the Finish method is called to “shutdown” the component. In395

this phase of simulation, the time-series values stored in the data model object are written396

to the HydroDesktop database. This is done by first extracting the theme description from397

the link. This description is then used to check if the database already contains a definition398

of the theme. If it already exists, then the new values are appended, otherwise a new entry399

is created. This procedure is continued for every output exchange item connected to the400

DbWriter.401

5. Example Application402

A simple yet instructive example is presented in this section to illustrate the use of Hy-403

droModeler and the benefit of interoperability between the HIS and OpenMI for integrated404

environmental modeling. Evapotranspiration (ET) is a hydrological process which relies on405

observation-based data to define weather conditions. ET describes the loss of water from the406

land surface to the atmosphere due to evaporation from the surface, including both soil and407

waterbodies, and transpiration by vegetation (Chow et al., 1988). This section demonstrates408

how an OpenMI-compliant ET model can utilize CUAHSI HIS input data that is stored in409

the HydroDesktop, execute in the HydroModeler environment, and then save output results410

back into the HydroDesktop database.411

5.1. ET Model412

Evapotranspiration can be approximated by the American Society of Civil Engineering413

(ASCE) Penman-Monteith (ASCE-PM) approximation. Typical application of this tech-414

nique consists of first calculating the standardized reference evapotranspiration ETsz (Allen415

16

et al., 2005) as416

ETsz =

1
λρw

∆(Rn −G) + γ Cn

T+273
u2(es − ea)

∆ + γ(1 + Cdu2)
(1)

where Rn is net radiation, G is soil heat flux density, T is daily averaged temperature, u2417

is daily averaged wind speed, es is saturation vapor pressure, ea is mean vapor pressure, ∆418

is the saturation vapor pressure-temperature curve, γ is the psychometric constant, λ is the419

latent heat of vaporization, ρw water density, and Cn and Cd are constants. Equation 1 is420

then multiplied by a crop coefficient (Kc) to estimate potential evapotranspiration (PET).421

In Equation 1, net radiation (Rn) is expressed as a total of short (Sn) and long (Ln) wave422

radiation423

Rn = Sn + Ln (2)

where shortwave radiation is calculated using air temperature, date, geographic location,424

and predetermined coefficients. Similarly, long wave radiation is calculated using air tem-425

perature, elevation, and several different coefficients.426

5.2. Model Implementation & Application427

The ASCE evapotranspiration (ET) model was implemented as two independent OpenMI428

components using the Simple Model Wrapper (SMW) approach (Castronova and Goodall,429

2010). The first component computes the ASCE standardized reference evapotranspiration430

(ETsz) (Equation 1) and the second computes net solar radiation (Rn) (Equation 2). By431

implementing the overall process as two components, each one can then be reused for other432

purposes (e.g. the solar radiation component can be reused in a snow melt model).433

The HydroDesktop was used to discover time-series observation data by searching the434

HIS data repository. The observational data required by the ET model includes temperature,435

wind speed, dew point temperature, as well as minimum and maximum temperatures. The436

HydroDesktop manages the download of this data and seamlessly transfers it to the local437

database repository. Static data required by the model, such as land cover, was downloaded438

from the United States Geological Survey (USGS) and then used to derive crop coefficients439

for each gage station. The observation data required by the ET and solar radiation com-440

ponents were supplied by the DbReader across user defined links. Similarly, the DbWriter441

17

was used to save simulation results back to the local HydroDesktop data repository. This442

output data could then be visualized within the HydroDesktop application. The following443

paragraphs describe how data is translated to and from the model simulation using the444

DbReader and DbWriter components.445

The initialize phase of model simulation is used to “setup” a model component. For the446

DbReader, this consists of extracting data themes from the HydroDesktop repository, and447

then creating OpenMI exchange items from them. These exchange items are then supplied448

to both the ET and solar radiation components via links (Figure 7). Links are used to449

define the flow of data between components during a simulation. Once a link has been450

established, the DbReader extracts all data corresponding to the exchange item and stores451

it in local memory. The DbWriter differs from the DbReader because it initially exposes a452

generic exchange input item that any component can connect to. Once a connection has453

been established, the DbWriter uses the link metadata to query the local data repository454

to find theme information. This theme information is then used to create a HydroDesktop455

data object.456

In the perform time step phase, models communicate across links throughout the simu-457

lation. For this model composition, both components require observation data that is stored458

in a local HydroDesktop repository. Additionally, the ETsz component requires an exchange459

item provided by the solar radiation component. Model simulation follows a distinct pro-460

cedure in which all model components advance through simulation on a time step basis;461

the standard OpenMI procedure. It begins in the “upstream” direction with a data request462

made by the trigger to the last component in the chain, and continues with subsequent data463

requests made by each component in an effort to resolve their input data. Once a compo-464

nent is reached that does not rely on an input, the flow of data begins in the “downstream”465

direction. The flow of data during a model simulation is illustrated in Figure 7. In this case,466

the DbReader does not rely on input data from another component, therefore the flow of467

data starts here. The DbReader supplies observation data stored in the local HydroDesktop468

database to the solar radiation and ET components. Next, the solar radiation component469

executes its computation and transfers the results to the ET component. The ET component470

18

then performs its computation using the input observation data along with the computed471

solar radiation. After this calculation is complete, the DbWriter is notified that new ET472

values exist, which are then extracted and stored in a HydroDesktop data object. This473

routine is repeated for every time step in the simulation.474

Finally, after model simulation has completed the components begin their finish method475

to shutdown. This generally consists of closing input files and releasing allocated memory.476

The DbWriter, however, performs additional operations during this phase including writing477

all data series that were collected during simulation to the local HydroDesktop database.478

The results can then be viewed using the HydroDesktop Graph plug-in (Figure 8). Data479

values can also be modified using other plug-ins, to remove any outliers or mis-calculations.480

Using this approach, the local HydroDesktop database functions to store both observation481

and simulation data. However, further integration between their concepts is necessary for a482

fully operational data management system.483

6. Summary, Discussion, and Future Work484

The CUAHSI HIS and OpenMI were developed by different development teams operat-485

ing in different parts of the world with little communication during formative development486

years. The potential for synergy between the two systems, however, is clear in that one487

handles data access and management needs, while the other handles model coupling and488

integration functionality. Providing interoperability between these two systems is therefore489

a more complete solution to the challenge of integrated environmental modeling. Hydro-490

Modeler is one solution to providing interoperability that allows HIS data to serve as input491

into OpenMI-compliant models and OpenMI-compliant model output to be written to the492

HydroDesktop database for visualization and analysis. However, as data collection and493

modeling efforts become more ambitious, issues will undoubtedly continue to arise. Stan-494

dardization of the approaches for describing environmental data across collection systems495

and models is required to understand and manage environmental systems.496

The scope of integrated environmental modeling is beyond any single group or organi-497

zation, thus merging standards and approaches will almost certainly be an important part498

19

of the process. The work demonstrates that two standards created by two different groups499

with little formal interaction can still be integrated into a single system. However, it also500

illustrates that the integration process can be done more seamlessly and completely through501

establishing overarching standards organizations that ensure that protocols and data stan-502

dards are synchronized across groups. Both the HIS and OpenMI teams have been working503

with the Open Geospatial Consortium (OGC) in an effort to establish their own protocols504

and data exchange standards within the larger body of OGC standards. This work should505

lead to more universally established standards which are needed to support integrated en-506

vironmental modeling.507

The recent release of the OpenMI version 2.0 introduces several new concepts that we508

believe will better enable integration of the HIS and OpenMI. These additions generalize509

the standard by including time span simulation as well as the transfer of generic data types510

between model components. The new version of the OpenMI standard also includes behind-511

the-scenes functionality that will aid in the development of calibration routines. These512

additions greatly enhance the usability of the OpenMI standard across a broader range513

of research disciplines and offer more flexibility and control over model flow. This new514

functionality does not directly hinder the work presented here, although all existing OpenMI515

1.4 components will have to be upgraded to become OpenMI 2.0 compliant. One potential516

issue will be converting the DbWriter into an OpenMI 2.0 compliant form, since DbWriter517

required implementation in a non-standard manner. It is not clear whether this component518

will need to be redesigned or if it can be converted into an OpenMI 2.0 component using the519

current design approach. The OpenMI 2.0, like version 1.4, does not include a controlled520

vocabulary so that work to incorporate semantic integration between the HIS and OpenMI521

is still relevant and necessary.522

Future work will be aimed at adding functionality to the HydroModeler to better accom-523

modate modeling activities. For example, the HydroDesktop database, which was designed524

primary to accommodate observation data, should be enhanced to better store model re-525

lated information. There should be extensions to the HydroDesktop database to group time526

series into time series collections that will map more directly to OpenMI ExchangeItem527

20

objects. Furthermore, a more standardized method for storing simulation metadata is re-528

quired to distinguish between model runs where the output data will be identical in terms of529

spatial, temporal, and unit representations, but will differ in simulation result. Additional530

attributes are also necessary to document the differences between model runs, for example531

the parameters that were changed to create a specific model run. Currently, this is done532

using the HydroDesktop “Methods” table, however this serves as only a temporary solution.533

Moreover, the HydroDesktop database contains a “UnitConversions” table to define unit534

conversions for the data that is supplied to OpenMI components. As of now, these fields535

must be populated manually. In the future, these fields should populated on-the-fly as data536

series are downloaded from the HIS.537

References538

Ahrends, H., Mast, M., Rodgers, C., Kunstmann, H., 2008. Coupled hydrological-economic modelling for539

optimised irrigated cultivation in a semi-arid catchment of West Africa. Environmental Modelling &540

Software 23 (4), 385–395.541

Allen, R., Environmental, institute (U.S.)., W. R., 2005. The ASCE standardized reference evapotranspira-542

tion equation. American Society of Civil Engineers, Reston Va.543

Ames, D. P., Horsburgh, J. S., Goodall, J. L., Witeaker, T. L., Tarboton, D. G., Maidment, D. R., Jul. 2009.544

Introducing the open source CUAHSI Hydrologic Information System desktop application (HIS desktop).545

In: 18th World IMACS / MODSIM Congress. Cairns, Australia, 4353–4359.546

Ames, D. P., Michaelis, C., Anselmo, A., Chen, L., Dunsford, H., 2008. MapWindow GIS. Encyclopedia of547

GIS. Sashi Shekhar and Hui Xiong (Editors). Springer, New York, 633–634.548

Argent, R., 2004. An overview of model integration for environmental applications–components, frameworks549

and semantics. Environmental Modelling & Software 19 (3), 219–234.550

Argent, R.M., Perraud, J.M., Rahman, J.M., Grayson, R.B., Podger, G.M., 2009. A new approach to water551

quality modelling and environmental decision support systems. Environmental Modelling & Software552

24 (7), 809–818553

Billah, M.M., Goodall, J.L., 2011. Annual and interannual variations in terrestrial water storage during and554

following a period of drought in South Carolina, USA. Journal of Hydrology 409 (1-2), 472–482.555

Bristow, K., Campbell, G., May 1984. On the relationship between incoming solar radiation and daily556

maximum and minimum temperature? Agricultural and Forest Meteorology 31 (2), 159–166.557

Bulatewicz, T., Yang, X., Peterson, J.M., Staggenborg, S., Welch, S.M., Steward, D.R., 2009. Accessible inte-558

21

gration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI):559

methodology and initial results. Hydrology and Earth System Sciences Discussions 6, 7213–7246.560

Castronova, A. M., Goodall, J. L., 2010. A generic approach for developing process-level hydrologic modeling561

components. Environmental Modelling & Software 25 (7), 819–825.562

Chow, V. T., Maidment, D. R., Mays, L. W., 1988. Applied Hydrology. McGraw-Hill, New York.563

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., Apr. 2002. Unraveling the564

Web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6 (2), 86–93.565

Goodall, J., Horsburgh, J., Whiteaker, T., Maidment, D., Zaslavsky, I., 2008. A first approach to web services566

for the National Water Information System. Environmental Modelling & Software 23 (4), 404–411.567

Gregersen, J. B., Gijsbers, P. J. A., Westen, S. J. P., 2007. OpenMI: Open Modelling Interface. Journal of568

Hydroinformatics 9 (3), 175.569

Gruber, T., 2009. Ontology. Encyclopedia of Database Systems. Ling Liu and M. Tamer Özsu (Editors).570

Springer-Verlag, New York.571

Horsburgh, J. S., Tarboton, D. G., Maidment, D. R., Zaslavsky, I., 2008. A relational model for environ-572

mental and water resources data. Water Resources Research 44 (5), 406.573

Horsburgh, J. S., Tarboton, D. G., Piasecki, M., Maidment, D. R., Zaslavsky, I., Valentine, D., Whitenack,574

T., 2009. An integrated system for publishing environmental observations data. Environmental Modelling575

& Software 24 (8), 879–888.576

Huhns, M., Singh, M., 2005. Service-oriented computing: Key concepts and principles. IEEE Internet Com-577

puting 9 (1), 75–81.578

Kralisch, S., Krause, P., David O., 2005. Using the object modeling system for hydrological model develop-579

ment and application. Advances in Geosciences 4 (1-2), 75–81.580

Maidment, D., 1993. Handbook of hydrology. McGraw-Hill, New York.581

Maidment, D. R., 2008. Bringing water data together. Journal of Water Resources Planning and Management582

134 (2), 95.583

Maxwell, R.M., Chow, F.K., Kollet, S.J., 2007. The groundwater-land-surface-atmosphere connection: Soil584

moisture effects on the atmospheric boundary layer in fully-coupled simulations. Advances in Water585

Resources 30 (12), 2447–2466586

Moore, R. V., Tindall, C., 2005. An overview of the open modelling interface and environment (the OpenMI).587

Environmental Science & Policy 8 (3), 279–286.588

Penman, H. L., Apr. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the589

Royal Society A: Mathematical, Physical and Engineering Sciences 193 (1032), 120–145.590

Syvitski, J., Paola, C., Slingerland, R., Furbish, D., Wiberg, P., Tucker G., 2004. Building a community591

surface dynamics modeling system: rationale and strategy. A Report from the Scientific Community to592

22

the National Science Foundation.593

Tarboton, D.G., Horsburgh, J.S., Maidment, D.R., Whiteaker, T., Zaslavsky, I., Piasecki, M., Goodall, J.,594

Valentine, D., Whitenack, T., 2009. Development of a Community Hydrologic Information System. In:595

18th World IMACS / MODSIM Congress. Cairns, Australia, 988–994.596

Yu, Z., Pollard, D., Cheng, L., 2006. On continental-scale hydrologic simulations with a coupled hydrologic597

model. Journal of Hydrology 331 (1-2), 110–124598

23

Table 1: Mapping from the HydroDesktop data definition to the OpenMI data model, to create exchange

items.

HydroDesktop O
p
e
n
M

I

Q
u
a
n
ti
ty

ID D
es

cr
ip

ti
o
n

U
n
it

ID C
o
n
v
er

si
o
n
F

a
ct

o
rT

o
S
I

O
ff

se
tT

o
S
I

E
le
m
en

tS
et

ID D
es

cr
ip

ti
o
n

E
le
m
en

t

ID X
V

er
te

x

Y
V

er
te

x

Variables
VariableName
VariableCode
Units
UnitsAbbreviation
UnitConversions
ConversionFactor
Offset
DataThemeDescriptions
ThemeName
ThemeDescription
Sites
Longitude
Latitude

1

HIS Central
Data Discovery

HydroServer
Data Publication

HydroDesktop
Data Access

Web
Services

Figure 1: Overview of the CUAHSI Hydrologic Information System

24

Goundwater
Model

River
Hydraulics

Model

Watershed
Model

Figure 2: OpenMI defines a standard interface so that models can exchange values during a simulation run.

For example, a groundwater model and river hydraulics model could be coupled through the exchange of

groundwater heads and river seepage rates.

25

IQuantity
ID
Description
ValueType
Dimension
Unit

Unit
ID
Description
ConversionFactorToSI
OffsetToSI

IElementSet
ID
Description
SpatialReference
ElementType
...

IExchangeItem
Quantity
ElementSet

OpenMI CUAHSI HIS

ILinkableComponent
ModelID
ModelDescription
GetInputExchangeItem
GetOutputExchangeItem
TimeHorizon
Initialize
GetValues
Finish
...

DataSeries
SeriesID
SiteID
VariableID
BeginDate
EndDate
...

DataThemes
ThemeID
SeriesID
...

DataThemeDescriptions
ThemeID
ThemeName
ThemeDescription
DateCreated
...

DataValues
ValueID
SeriesID
DataValue
LocalDateTime
...

Variables
VariableID
VariableCode
VariableUnitsID
...

Sites
SiteID
SiteCode
SiteName
Latitude
Longitude
... Units

UnitsID
UnitsName
...

Figure 3: Overview of the common concepts in the OpenMI and CUAHSI HIS data models.

26

Browser Control

Properties Control

Composition Control

Ribbon Control

Figure 4: The HydroModeler environment composed of four main software components: the Properties,

Browser, Composition, and Ribbon controls.

27

Read Data Themes

HydroDesktop

SQLite

Build Exchange

Items from Themes

Get Theme Info

from Link

Read Time Series

Data

Retrieve Values

from Buffer

Store Values in

Buffer
Perform Spatial

Interpolation

Return Values

Perform Temporal

Interpolation

Initialize Add Link Get Values

Data Buffer

Figure 5: The methodology of the DbReader component separated into three primary methods: Initialize,

Add Link, and Get Values.

28

Create Generic Input

Exchange Items

Subscribe to

Listener Events

Create Data

Model Object

Read Link

Metadata

Store Data

Model

Get Theme

Info From Link

Request

Values

Get Site

Info

Store Values in

Data Model

HydroDesktop

SQLite

For each

Value

Initialize Add Link Data Changed

Get Theme Info

from Link

Write Values to

Database

For each Series

in Data Model

Finish

HydroDesktop

SQLite

Figure 6: The methodology of the DbWriter component separated into four primary functions: Initialize,

Add Link, Data Changed, and Finish.

29

Transfer ETsz

Calculate Etsz

from Equation 1

Calculate solar radiation

using Equations 2

through 7

Transfer solar radiation

Transfer of dew point, maximum,

minimum, and monthly averaged

range temperatures

Db Reader

Trigger

ASCE ETsz Solar Radiation

Db Writer

Transfer of wind speed, and

dew point, maximum, minimum,

and averaged temperatures
2

4
5

3

1

Write Etsz values to

local database

repository

Increment time

Figure 7: A graphical view of the ET model coupled with the HIS and built using the HydroModeler.

30

Potential Evapotranspiration

Figure 8: The seasonal trend of daily Potential Evapotranspiration (PET) using weather data from Asheville,

NC and Greenville, SC.

31

