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12 
ABSTRACT 13 

Improved understanding of the potential regional impacts of projected climatic changes 14 
on nitrogen yield is needed to inform water resources management throughout the US. 15 
The objective of this research is to look broadly at watersheds in the contiguous United 16 
States to assess the potential regional impact of changes in precipitation (P) and air 17 
temperature (T) on nitrogen yield. The SPARROW model and downscaled P and T 18 
outputs from 14 General Circulation Models (GCMs) were used to explore impacts on 19 
nitrogen yield. Results of the analysis suggest that projected changes in P and T will 20 
decrease nitrogen yield for the majority of the contiguous United States, including the 21 
watersheds of the Chesapeake Bay and Gulf of Mexico. Some regions, however, such as 22 
the Pacific Northwest and Northern California, are projected to face climatic conditions 23 
that, according to the model results, may increase nitrogen yield. Combining the 24 
projections of climate-driven changes in nitrogen yield with projected changes in 25 
watershed nitrogen inputs could help water resource managers develop regionally-26 
specific, long-term strategies to mitigate nitrogen pollution.  27 
 28 
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INTRODUCTION 1 

During the twentieth century anthropogenic activity has doubled the turnover rate 2 

of the global nitrogen (N) cycle (Vitousek et al., 1997; Gruber and Galloway, 2008). The 3 

increased availability and input of N, which is a limiting nutrient, to coastal and estuarine 4 

waterbodies can lead to eutrophication and the formation of hypoxic dead zones (Diaz 5 

and Rosenburg, 2008). These conditions lead to reductions in fish and shellfish 6 

production, losses to biotic diversity, harmful algal blooms, and changes in ecological 7 

food web structures (Diaz and Rosenburg, 2008; Howarth et al., 2011). Studies suggest 8 

that about 20 to 27% of the anthropogenic N input to the landscape is exported to streams 9 

and the remaining 75 to 80% is stored or denitrified in the landscape in North American 10 

watersheds ( Hong et al., 2013; Howarth et al., 2006). For the purposes of this study, we 11 

call the amount of N delivered to streams and waterbodies from the landscape the N yield 12 

(kg/ha yr). The N yield to a stream reach from its subcatchment, without considering 13 

upstream contributions, is called incremental N yield (kg/ha yr).  14 

Previous studies have shown that watersheds with higher precipitation (P), runoff, 15 

and discharge tend to export a greater fraction of N to streams (Han et al., 2009; Howarth 16 

et al., 2012; Kaushal et al., 2008). While a complete understanding of the processes that 17 

result in this correlation between wet vs. dry watersheds and N yield is missing, 18 

researchers hypothesize that wet watersheds have lower residence times, and therefore 19 

there is less time for denitrification processes to occur in the landscape of these 20 

watersheds before N inputs are transported to downstream waterbodies (Howarth et al., 21 

2006, 2012).  Previous studies have also demonstrated a relationship between air 22 

temperature (T) and N yield (Schaefer and Alber, 2007; Seitzinger, 1988; Veraart et al., 23 



2011). These studies have shown that watersheds with higher T tend to have lower N 1 

yields, possibly due to a higher rate of denitrification in the landscape of these watersheds 2 

(Schaefer and Alber, 2007).  In addition, in shallow waters, higher T tends to decrease 3 

solubility of oxygen and increase respiration, resulting in a synergistic effect that boosts 4 

denitrification (Veraart et al., 2011). With P and T at odds in terms of their impact on N 5 

yield, the potential impact of climate change on N yield remains uncertain (Najjar et al., 6 

2010). 7 

Part of the challenge in understanding climate change impacts on N yield is 8 

determining the role of storage of N in terrestrial pools in controlling the observed 9 

difference between N yield in wet and dry years. During dry years, N accumulates in the 10 

landscape due to reduced hydrologic transport and uptake by plants through transpiration. 11 

During wet years, this store of terrestrial N is flushed to streams (Davis et al., 2014; 12 

Goolsby et al., 1999; McIsaac et al., 2016; Van Meter et al., 2016). Given this, one might 13 

conclude that there would be no significant long term impact of climate change on 14 

average N yield because there is a steady-state rate at which N is stored and then flushed 15 

from the landscape. However, Sinha and Michalak (2016), using a long term data set of 16 

Net Anthropogenic Nitrogen Inputs (NANI), land use, and P as model inputs, showed 17 

that changes in P are significant in controlling the interannual variability of N loading 18 

across large spatial scales. Likewise, Howarth et al. (2012) showed using a large database 19 

of N yield data in the United States and Europe that climate is correlated with N yield. 20 

Thus, the authors conclude climate change will likely impact N yield and loadings to 21 

already stressed waterbodies. The question remains, however, as to the specific regional 22 

patterns of impact on N yield due to projected changes in climatic conditions over the 23 



coming century.  1 

The objective of this study is to provide insight into the potential impact of 2 

projected climate conditions on N yield for different regions in the contiguous United 3 

States. We use the SPAtially Referenced Regression On Watershed attributes 4 

(SPARROW) model (Schwarz et al., 2006; Smith et al., 1997) to understand the 5 

relationship between current P and T conditions and N yield for watersheds in the 6 

contiguous United States. SPARROW is a widely used and well-evaluated model 7 

appropriate for continental-scale analysis of terrestrial N transport (Schwarz et al., 2006). 8 

The model uses mass balance principles and a simplified first-order-decay representation 9 

of mass loss due to terrestrial and riverine N transport within a statistical framework for 10 

fitting model coefficients. We calibrate our model based on two emission scenarios for 14 11 

general circulation models and baseline conditions in 1992. The model was verified using 12 

observed data in 2001 and then used to determine projected N yield change (%) for future 13 

time periods, as detailed in the Results and Discussion.  14 

MATERIALS AND METHODS 15 

Model Description 16 

SPARROW is a non-linear regression, process-based water quality model used to 17 

predict N loading in unmonitored reaches under long-term, steady-state conditions 18 

(Schwarz et al., 2006). SPARROW relates the dependent variable, observed loadings, 19 

with the independent variables waterbody/river properties, watershed attributes, and N 20 

sources. SPARROW includes reduced-complexity process representations for describing 21 

land-to-water, in-stream, and in-reservoir transport. Results from past SPARROW 22 



applications suggest these representations are appropriate at the watershed-scale for 1 

modeling long-term average conditions across large regions including continental-scale 2 

studies (Alexander et al., 2002; Grizzetti et al., 2005). 3 

SPARROW estimates mean annual total N loading at reach i as 4 

 

 
(1) 

where the first term of the equation represents the flux contribution to reach i from the 5 

adjacent upstream reach and Lj is the flux that exits the adjacent upstream reach. The 6 

function A(.) represents the instream transport loss. The vectors  and  represent 7 

stream and reservoir characteristics, while κs and κr represent the stream and reservoir 8 

coefficient vectors. The second term of the equation represents the flux that originates in 9 

the watershed of reach i. The term sn,i represents the contribution from N source n to 10 

reach i. The term βn is a regression coefficient estimated by the model for source n. The 11 

function D(.) in the equation represents the land-to-water transport process. The vector 12 

 represents watershed attributes and α is the estimated coefficient for vector . The 13 

vector A′(.) represents the instream transport loss and εi is the multiplicative error term 14 

defined by the model (Schwarz et al., 2006).  15 

The function D(.) in the SPARROW model equation provided in the paper 16 

describes the land-to-water delivery process and is modeled as  17 
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where α′ is the vector of the model coefficients that describe the land-to-water delivery 1 

for the watershed attribute vector,  . The vector A′(.) that represents the instream 2 

transport loss is modeled as  3 

  (3) 

where κ′s represents the vector of decay coefficients that is based on the mean annual 4 

flow rates of the streams and are estimated as mass loss per unit length of streams. The 5 

term Ti,j is the vector of waterbody properties including mean annual flow rates. Finally, 6 

losses due to lakes or reservoirs is modeled as 7 

  (4) 

where κr represents the reservoir decay coefficient and   is the areal hydraulic loading 8 

which is the ratio of reservoir outflow to surface area, in units of distance per time.  9 

The model is implemented in the SAS statistical language and available as an 10 

open-source software from the United States Geological Survey (USGS). We used 11 

version 2.9 of the SPARROW model, the latest version of the model available when the 12 

majority of the modeling work was performed (2011-2013). Additional detail on the 13 

SPARROW model including availability of the model code is available from 14 

https://water.usgs.gov/nawqa/sparrow/. 15 

Data Preparation 16 

Watershed Attributes and Nitrogen Sources. We used the 1:500,000 spatial scale 17 

Enhanced River Reach File 1 (ERF1) dataset (Nolan et al., 2002) for this study as the 18 

digital representation of rivers in the contiguous United States. This dataset includes 19 

more than 60,000 reaches with estimates of mean streamflow, stream velocity, time of 20 
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travel, drainage density, mean water depth, and areal hydraulic load. Nitrogen sources in 1 

this study are consistent with past SPARROW applications and include fertilizer 2 

application, livestock waste, population related sources, atmospheric deposition and 3 

nonagricultural non-point source pollution. Consistent with prior studies, we used the 4 

watershed level atmospheric deposition data averaged over the period 1991 to 1993, 5 

where atmospheric deposition was considered as the wet deposition of inorganic N 6 

(nitrate and ammonia) (kg/yr) (Alam and Goodall, 2012; NADP, 2010).  7 

Watersheds for each ERF1 reach were derived from the Hydro1K Digital 8 

Elevation Model (U.S. Geological Survey, 2004) using terrain processing algorithms. The 9 

National Land Cover Dataset (NLCD) 1992/2001 Retrofit Land Cover Change Product 10 

was used to estimate 1992 land use conditions, because using the 1992 NLCD product 11 

directly does not make use of the improved land cover/use classification scheme used for 12 

the 1992/2001 change product. Average depth-weighted permeability was computed from 13 

the State Soil Geographic (STATSGO) database through prior work for each watershed 14 

in the model. Human population estimates were used as a surrogate for point sources as 15 

population is highly related to the urban wastewater effluent and municipal waste 16 

production. County level population estimates were obtained from the United States 17 

Census Bureau for 1992. These county level population estimates were then distributed 18 

among the watersheds based on their area of urban land use. County level fertilizer 19 

application was estimated as both farm and nonfarm fertilizer application. This county 20 

level fertilizer application was then distributed among the watersheds based on their 21 

amount of crop and urban land using the assumption that fertilizer is applied to both 22 

cropland and urban land (as fertilizer for lawns and landscaping). Ruddy et al. (2006) 23 



presented a county-level N input dataset of livestock waste for the period 1982-2001. 1 

This county level livestock waste dataset considered confined and unconfined manure 2 

and was distributed among the watersheds based on their amount of agricultural land. 3 

Finally, nonagricultural land in this study was estimated as the sum of only the urban, 4 

forest, and grassland. Further detail on the methods for estimating the watershed 5 

attributes is provided in Alam and Goodall (2012). 6 

Precipitation and Temperature Changes. The General Circulation Models 7 

(GCMs) used in this study are from the World Climate Research Programme’s (WCRP’s) 8 

Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset (Meehl et 9 

al., 2007). We used an ensemble of 14 GCMs for the climate predictions similar to prior 10 

studies looking at the impact of climate change on water resources (Brekke et al., 2008; 11 

Maurer et al., 2007; Pierce et al., 2009; Reichler and Kim, 2008) (See Table 1 for a list of 12 

the GCMs used). The data were statistically downscaled to 1/8º grid cells (approximately 13 

12 by 12 km) and bias-corrected using the approach described by Maurer et al. (2007). In 14 

this study we considered the two extreme emission scenarios: higher (A2) and lower (B1) 15 

future emission scenarios. We refer to model runs for specific times in later sections, but 16 

these are in fact averages of multiyear periods where “baseline” or “1992” refers to 1982-17 

2001, “2030” refers to 2020-2039, “2050” refers to 2040-2059, and “2090” refers to 18 

2080-2099. Using a twenty-year averaging window addresses the challenge of inter-19 

annual storage of N in terrestrial pools by looking at longer periods where changes in 20 

terrestrial storage between analysis periods should be less.  21 

 22 
[INSERT TABLE 1 HERE]23 



 9  

All GCMs used for this work have been previously used in various assessments of 1 

the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report and at 2 

the time this work was done, output from the third phase of the Coupled Model 3 

Intercomparison Project (CMIP3) was the only dataset available for the contiguous U.S. 4 

with downscaled resolution as fine as 1/8º. Recent studies comparing CMIP3 with the 5 

now available CMIP5 have found only small differences in magnitude and spatial 6 

distribution of model outputs including precipitation (Baker and Huang, 2014; Sun et al., 7 

2015). Therefore it is expected that the results for this study will be consistent with any 8 

results determined using the more updated CMIP5. The GCM outputs are available for 9 

different emission scenarios where each scenario represents a different assumption for 10 

future human activity, greenhouse gas emission, technology development, and economic 11 

growth. The decision to use a twenty-year averaging period around the target year was 12 

done in part to reduce the variability in annual P and T projections and to provide long-13 

term conditions for the SPARROW model. The resulting datasets for future P and T for 14 

the study area are the average across the 14 downscaled GCM outputs for presentation 15 

purposes. 16 

Future projections for both P and T show strong spatial and temporal patterns. T 17 

is consistently higher for the contiguous US for all time periods and emissions scenarios 18 

(Figure 1). The higher emissions scenario (A2) and longer time horizon produces the 19 

greatest T increases, and the Great Plains and mid-western parts of the contiguous US are 20 

projected to experience the greatest T increases. While some of the GCMs predict an 21 

overall increase in P, others predict a decrease (Figure 2). However, there is general 22 



 10  

agreement among the model projections for increasing P in most of the contiguous US, 1 

with P decreasing in the Great Plains and parts of the southern US. 2 

 3 

[INSERT FIGURE 1 HERE] 4 

 5 

[INSERT FIGURE 2 HERE] 6 

 7 

Establishing Baseline Nitrogen Yield Conditions 8 

SPARROW was first run to establish baseline conditions for N yield (Figure 3). For 9 

consistency with projections of future conditions, this model run made use of P and T 10 

datasets from the 14 GCMs averaged over a 20-year period around 1992. We did this for 11 

both the A2 and B1 emission scenarios, which are nearly identical but have slight 12 

differences that are presumably due to underlying assumptions in the emission scenarios. 13 

Regression coefficients in the SPARROW model were determined using observed stream 14 

discharge and total N concentration data from 354 United States Geological Survey 15 

(USGS) National Stream Quality Accounting Network (NASQAN) stations for the period 16 

1970-2000 (Deacon et al., 2015). Total N observations were taken as the sum of nitrate, 17 

nitrite, and total Kjeldahl N in unfiltered samples. These discharge and concentration data 18 

were used to estimate total N loading detrended to 1992, the dependent variable in the 19 

SPARROW model, using the FluxMaster model (Schwarz et al., 2006). Detrending the 20 

data allowed the analysis to focus on fluctuations in the data and not its overall trend. 21 

Additional details on detrending discharge and concentration data can be found in Alam 22 

and Goodall (2012). 23 



 11  

[INSERT FIGURE 3 HERE]  1 

 2 

Modeling the Impact of Future P and T on Incremental N Yield 3 

In order to determine differences in N yield from the baseline model run to future 4 

P and T conditions, we assumed the correlations found in the baseline model would hold 5 

for future changes in P and T. Average P and T conditions for each watershed in the 6 

model were determined by averaging across 20-year time periods centered on the years 7 

2030, 2050, and 2090. We did this so that each watershed has estimates of P and T for the 8 

three future time periods based on each of the 14 GCM projections run under two 9 

emissions scenarios (A2 and B1). Differences in N yield from the base year (1992) to 10 

future conditions (e.g., 2030, 2050 and 2090) were quantified for each watershed in the 11 

contiguous United States by applying the SPARROW model. We then spatially 12 

aggregated the model results to major river basins to determine regional patterns. 13 

Due to the complexity of modeling continental-scale N transport, we had to make 14 

simplifying assumptions in our modeling work. We assumed that over the 20 year 15 

averaging periods used in the analysis, terrestrial N storage within watersheds would be 16 

constant. SPARROW is a steady-state model used to predict average N transport across 17 

regions over long (multiple decade) time periods. Thus the model assumes no change in 18 

terrestrial N storage. While there is work to create a seasonally-dynamic version of 19 

SPARROW (Smith et al., 2013) that incorporates modeling storage changes, a dynamic 20 

version of the SPARROW model has not been publically released. For this reason, we 21 

used a 20 year averaging period and assumed there will be no significant net change in 22 

terrestrial N storage within watersheds over this period. Howden et al. (2011) provides 23 



 12  

support for this assumption by suggesting that at least a 12 year period is necessary to 1 

isolate trends in fluvial water chemistry from hydrologic variability. 2 

Another assumption behind the analysis is that the SPARROW regression 3 

coefficients will hold into the late century. We calibrated the model coefficients for the 4 

baseline conditions in 1992 model to predict N flux for an observed period with sufficient 5 

water quality and continental-scale land use data. We used the calibrated model 6 

coefficients to predict 2001 conditions and found a good match between observed and 7 

modeled conditions, as described in the Results and Discussion section. We also 8 

compared our calibrated model coefficients to calibrated model coefficients obtained 9 

through past SPARROW studies to test their consistency. In a conversation with 10 

SPARROW model developers, it was suggested that another way of considering this 11 

assumption is as a “space-for-time substitution (SFT)” (Pickett, 1989). The SFT 12 

assumption is that observed correlations between measured watershed properties and N 13 

loadings for the set of spatially distributed watersheds within our study region that 14 

experience a wide range of P and T conditions inform how changes in future P and T 15 

conditions may impact future N yield for these watersheds. This assumption has been 16 

used in ecological studies as a method for forecasting the potential impact of future 17 

climatic conditions (Blois et al., 2013), and shares similarities to the approach used here 18 

for looking at a large collection of watersheds to project possible climate change impacts. 19 



 13  

RESULTS and DISCUSSION 1 

Model Calibration and Verification 2 

The calibrated baseline (1992) model was able to explain more than 80% of the 3 

variability in the observed N loading time series from 354 NASQAN stations for the 4 

1970-2000 time period. For both the A2 and B1 scenarios, the r2 value for the predicted 5 

vs. actual log of flux was 0.89 (Figure 4) and predicted vs actual log of yield was 0.81. 6 

The Root Mean Square Error (RMSE) for both the A2 and B1 scenarios was 0.62. The β 7 

coefficients were the source coefficients and provide information about the relationship 8 

between the sources and the instream N (Table 2). All the β coefficients were statistically 9 

significant (p < 0.05) except for the livestock waste. The α coefficients, which relate to 10 

land-to-water transport and therefore N yield, were statistically significant (p < 0.05) 11 

except for the drainage density. Instream loss coefficients (κ) for both the low-flow 12 

streams (Q < 28.3 m3/s) and medium-flow streams (28.3 m3/s ≤ Q ≤ 283 m3/s) were 13 

statistically significant. Higher in-stream loss rates for the small streams is consistent 14 

with previous studies using SPARROW (Alexander et al., 2000). Finally, reservoir loss 15 

coefficients (κr) were also found to be statistically significant in the model calibration. 16 

 17 

[INSERT FIGURE 4 HERE] 18 

 19 
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 14  

Model Evaluation 1 

In order to evaluate the baseline model performance, the calibrated model was applied to 2 

a new time period where sufficient land use and water quality observation data was 3 

available (2001). It was found that the model coefficients performed well at explaining 4 

observed variation in the 2001 flux dataset; the r2 value was 0.90 (Figure 5). We also 5 

looked at past SPARROW studies and found that our baseline model resulted in 6 

calibrated parameters that are similar to those reported in other studies (Alam and 7 

Goodall, 2012; Alexander et al., 2008; Brown et al., 2011; Hoos and McMahon, 2009; 8 

Moore et al., 2011; Najjar et al., 2010; Rebich et al., 2011; Robertson and Saad, 2011; 9 

Smith et al., 1997; Wise and Johnson, 2011). Based on these past studies we found a 10 

consistent negative relationship between N loading and mean annual T and a positive 11 

relationship between N loading and mean annual P. 12 

 13 

[INSERT FIGURE 5 HERE] 14 

Impact of P and T on Incremental N Yield 15 

Differences in incremental N yield from baseline (1992) conditions to future 16 

periods (2030, 2050, and 2090) were estimated from an ensemble of 14 SPARROW 17 

model runs with different P and T inputs, constructed from the individual GCMs under 18 

the A2 and B1 emission scenarios (Figure 6). Incremental N yield considers only the N 19 

yield to a stream from its sub-catchment and not upstream contributions. The estimates 20 

indicate that changes in P and T conditions will decrease incremental N yield for the vast 21 

majority of the study area under both the A2 and B1 emission scenarios. The regions 22 

projected to experience the largest increase in T and the largest decrease in P are those 23 



 15  

where conditions are most conducive to lowering incremental N yield. On the other hand, 1 

regions projected to face increased P and a relatively lower increase in T could 2 

potentially have higher incremental N yield. 3 

 4 

[INSERT FIGURE 6 HERE] 5 

 6 

There is significant uncertainty in future P & T conditions caused both by (i) 7 

different emission scenarios and (ii) differences across individual models within the 8 

ensemble of 14 GCMs used in the analysis. For the A2 (higher emissions) scenario, 9 

results suggest an average decrease of 4.4% in incremental N yield by 2030 with a range 10 

between no change and a 12% decrease when only P and T are varied and all other model 11 

variables are held constant. By the year 2050, the decrease in incremental N yield from 12 

baseline conditions for the A2 scenario is about 8.4% on average with a range of 2.2% to 13 

20%. By 2090, the decrease in incremental N yield from baseline conditions using the A2 14 

scenario is projected to be 20% with a range of 4.4% to 38% across the GCMs. For the 15 

B1 (lower emissions) scenario, estimates are still for a decrease in incremental N yield 16 

from the baseline conditions on average across the study region. These changes in 17 

incremental N yield are as follows: by 2030 a 4.6% decrease on average ranging from a 18 

1.57% increase to a 12% decrease; by 2050 a 6.6% decrease with a range of 0.5% to 19 

15%, and by 2090 an 11.5% decrease with a range of 0.6% to 20%.  Clearly the 20 

uncertainty in this analysis is large. However, the average values across the ensemble of 21 

GCMs do suggest that the net effect of P and T changes on incremental N yield, when all 22 



 16  

other variables are held constant, would be to decrease incremental N yield for the vast 1 

majority of the contiguous United States.  2 

There are underlying mechanistic processes that provide support for the observed 3 

correlations between T, P, and N yield. As we discussed earlier, increases in T are 4 

thought to aid in denitrification processes (Seitzinger, 1988; Veraart et al., 2011) by 5 

lowering the amount of reduced N and decreasing N yield. Decreases in P produce longer 6 

residence time in dry conditions and increase N retention by the soil, plants, and microbes 7 

(Howarth et al., 2006). Increased P can increase runoff and cause greater transport of N 8 

from the landscape to streams and waterbodies (Nangia et al., 2010). Heavily fertilized 9 

river basins like the Mississippi can be more sensitive to P; a small increase in P can lead 10 

to a large increase in N loading (Donner and Kucharik, 2003). During wet years, not only 11 

does N yield from land increase, but the instream N removal also decreases and leads to a 12 

large increase in N loading to the stream (Donner and Kucharik, 2004). A study of a 13 

semiarid Arizona watershed using the physically-based SWAT model suggested a 14 

decrease in nitrate export due to a projected warmer and drier climate (Ye and Grimm, 15 

2013). For these reasons, we argue that it is reasonable to assume that the correlations 16 

found by the SPARROW for the baseline model have some predictive power for 17 

observed periods, consistency across a variety of study areas, and are in line with known 18 

mechanistic relationships between T, P, and N yield. 19 

Assessment of Regional Patterns 20 

Incremental N yield results and comparisons from the baseline period to the 21 

periods 2030, 2050, and 2090 are summarized and presented for hydrologic regions (2-22 



 17  

digit HUC) for the contiguous United States (Figure 7). Names and numbers for the 1 

hydrologic regions are provided in Figure 8 and Table 3. The model results suggest 2 

incremental N yield, when considering changes in P and T and holding all other variables 3 

constant, will decrease most significantly in the Arkansas-White-Red, Texas-Gulf, Rio 4 

Grande, and Upper Colorado regions due to changes in P and T. The average decrease for 5 

these regions is 7% by 2030 based on both the A2 and B1 scenarios. By 2050, these 6 

regions would have an average incremental N yield decrease of about 13% based on the 7 

A2 scenario and 9% based on the B1 scenario,. By the year 2090, the highest average 8 

decrease would be about 25% based on the A2 scenario and 15% based on the B1 9 

scenario. Regions with the lowest decrease across both scenarios and time periods 10 

include New England, South Atlantic-Gulf, and Mid-Atlantic. 11 

While regional averages point to decreases in incremental N yield from projected 12 

changes in P and T, there are watersheds within these regions where the results suggest 13 

that future P and T conditions may increase N yield from baseline conditions. These 14 

watersheds are located throughout the study region, as indicated by the whiskers in the 15 

plots given in Figure 7. Figure 6 shows clusters of these watersheds appearing in the 16 

Pacific Northwest and Northern California. Projected changes in N yield in these regions 17 

due to changes in P and T are as high as 15% by 2050 and 25% by 2090. These regions 18 

tend to have more moderate projected increases in T and higher projected increases in P 19 

compared to other watersheds within the study area. Plans to reduce N pollution within 20 

waterbodies impacted by these watersheds in particular should incorporate projected 21 

climate change impacts. 22 

 23 
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[INSERT FIGURE 7 HERE] 1 

 2 

[INSERT FIGURE 8 HERE] 3 

 4 

[INSERT TABLE 3 HERE] 5 

Consequences of Regional Patterns for Impaired Waterbodies 6 

The results of this study have management implications for waterbodies in the 7 

contiguous US, such as the Chesapeake Bay (Kemp, et al., 2005) and the Gulf of Mexico 8 

(Diaz and Rosenberg, 2008), where nutrient pollution, eutrophication, and hypoxia are 9 

major concerns. Based on the modeling results, subcatchments in the Chesapeake Bay 10 

Watershed, considered here as the Mid-Atlantic Region (02), will have a median decrease 11 

in incremental N yield of 3.6%, 4.4%, and 13.9% in the 2030, 2050, and 2090 time 12 

periods, respectively, for the A2 emission scenario. The B1 emission scenario shows 13 

median N yield decreases of 3.4%, 4.8%, and 9.0% for the same time periods. The Gulf 14 

of Mexico’s watershed also shows median decreases in incremental N yield in both 15 

emission scenarios and through all three study periods. Regions impacting the Gulf of 16 

Mexico include the South Atlantic-Gulf (03), Ohio (05), Tennessee (06), Upper 17 

Mississippi (07), Lower Mississippi (08), Missouri (10), Arkansas-White-Red (11), and 18 

Texas-Gulf, (12), which are parts of the Mississippi-Atchafalaya River Basin. The 19 

average of the median decreases in incremental N yield for these regions are 5.4%, 8.7%, 20 

and 19.8% based on the A2 scenario, and 5.2%, 6.9%, and 11.7% based on the B1 21 

scenario, for the corresponding time periods of 2030, 2050, and 2090. These results are 22 

based solely on changes to P and T. However, combining the projections of climate-23 



 19  

driven changes in N yield with projected changes in watershed N inputs could help water 1 

resource managers develop regionally-specific, long-term strategies to mitigate N 2 

pollution in heavily impaired waterbodies. 3 

Comparison of Model Results with Prior Studies 4 

A limited number of previous studies have used GCMs to project estimates of 5 

climate change impacts on N yield. Howarth, et al. (2006), in one of the early studies 6 

exploring this topic, used GCM predicted P and discharge values to estimate future 7 

discharge and subsequent N export from the Susquehanna River to the Chesapeake Bay. 8 

They reported a mean change in P from baseline study values of +4% by 2030 and +15% 9 

by 2095. The reported mean change in discharge is +2% by 2030 and +11% by 2095. 10 

They found that these changes in P and discharge corresponded with a change in riverine 11 

N flux ranging from +3% to +17% and +16 to +65% by 2030 and 2095, respectively. The 12 

authors noted that N responds nonlinearly to climate changes; a small change in 13 

precipitation can cause a large change in N flux. However, by basing the change in 14 

riverine N flux only on P and discharge, the authors miss the effect that projected 15 

increases in T can have on lowering N flux. Incorporating T in our model, as well as 16 

using an ensemble of 14 GCMs, resulted in decreasing projected N yield for much of the 17 

Susquehanna River Basin. 18 

More recently, the Soil and Water Assessment Tool (SWAT) hydrologic model 19 

has been used with GCM outputs in several studies at varying spatial scales. For a 505 20 

km2, semi-arid Arizona watershed within the Lower Colorado region, Ye and Grimm 21 

(2013) predicted a decrease in N export, over the current mean value of 30 kg N day-1, of 22 

33%, 50%, and 60% by the 2020s, 2050s, and 2080s, respectively. Our results for the 23 
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Lower Colorado region, which includes the watershed studied by Ye and Grimm (2013), 1 

indicate an average incremental N yield decrease in the A2 emission scenario of 6%, 2 

10%, and 23% and in the B1 scenario of 4%, 9%, and 16% for the respective time periods 3 

of 2030, 2050, and 2090. 4 

 Two studies of the Upper Mississippi River Basin (UMRB) also made use of a 5 

SWAT-GCM coupling. The UMRB, with its large amount of agricultural land, 6 

contributes to nutrient pollution of the Gulf of Mexico. To model this region, Jha, et al. 7 

(2015) showed N yield change based on a SWAT-GCM coupling of projected P and T at 8 

the subcatchment level. They found that subcatchments in the UMRB with higher P for 9 

the mid-century (2046-2065) had increased N yield; increased T in subcatchments with 10 

minimal changes in P showed decreased N yield. Roughly half of the subwatersheds in 11 

Iowa showed decreases in N yield, while all of the UMRB subwatersheds in Illinois 12 

showed increases in N yield. The study highlighted that future climate can increase water 13 

quality problems in some subwatersheds, while causing improved water quality in others. 14 

Their overall predicted change in average annual nitrate-N loading patterns for the 15 

UMRB ranged from -38% to +101% with an average increase of 13% over the entire 16 

basin (based on the average nitrate+nitrite value in Figure 6 from Jha, et al., (2006)). 17 

Panagopoulos, et al. (2014), while exploring the impact of agricultural practices on 18 

nutrient export under current and projected climate conditions, showed a decrease in N 19 

export from the UMRB over their modeled 1981 to 2000 baseline. Based on a single 20 

GCM projection, they predicted decreases of 13% in nitrate-N and 17% in total N by 21 

2046-2065. Our results for the Upper Mississippi region projected decreases in median 22 
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incremental N yield of 5.4%, 7.1%, and 17.8% for the A2 scenario and 4.4%, 6.2%, and 1 

11.0% for the B1 scenario for the respective 2030, 2050, and 2090 time periods. 2 

Variability Across Watersheds Under Two Emission Scenarios 3 

The model results can be summarized by the relationship between average change 4 

in T (°C), P (mm), and incremental N yield change from baseline conditions (%) for the 5 

two emission scenarios (Figure 9). This was done for all 14 GCMs for both the A2 and 6 

B1 emission scenarios and averaged for the 2,149 USGS 8-digit cataloging unit (Seaber 7 

et al., 1987) watersheds. The boxed clusters of points in the two subplots are results for 8 

the three time periods used in the analysis (2030, 2050, and 2090), with each point 9 

representing an individual watershed. The variability in T and P can be seen clearly in 10 

Figure 9. The higher emissions in the A2 scenario led to greater projected changes in T 11 

and P, causing the larger distribution of points. With lower emissions in the B1 scenario, 12 

there is less projected change in T and P, which causes the denser clustering of points. 13 

Figure 9 provides valuable insights into P and T changes and how these changes impact 14 

incremental N yield for the collection of watersheds in the contiguous US. While T 15 

shows a clear upward trend for the majority of the watersheds, P does not. The majority 16 

of watersheds do show an increase in P, but many show a decrease in P. There are clear 17 

demarcations in the plot at which a given change in P and T will result in a certain N 18 

yield change. While most watersheds fall inside of these zones, there are individual 19 

watersheds that have different N yield changes than the surrounding watersheds with the 20 

same T and P changes. This indicates that N yield change in these watersheds is more 21 

heavily influenced by other factors, such as a major point source or high urbanization, 22 

than by changes in T and P. These results provide useful information to water resource 23 
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managers by showing expected changes in incremental N yield for a given change in P 1 

and T for most watersheds, but also the potential for outlier watersheds with unique 2 

properties resulting in atypical changes in incremental N yield. 3 

 4 

[INSERT FIGURE 9 HERE]5 
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 1 

CONCLUSIONS 2 

The goal of this study is to improve understanding of regional changes in N yield 3 

that may result from projected long term changes in P and T. The SPARROW model 4 

offers a means for gaining insight into how watershed characteristics, including average P 5 

and T, result in N transport including N yield. We used SPARROW and future 6 

projections of P and T from across an ensemble of 14 GCM models for two different 7 

emission scenarios to identify how projected regional patterns in P and T might influence 8 

future regional patterns in N yield.   9 

The results suggest that projected climatic conditions may decrease N yield from 10 

the landscape to waterbodies for the majority of the contiguous US. Increases in T, which 11 

are thought to lower N yield by increasing denitrification processes, will often outweigh 12 

increases in P, which are thought to increase N yield by decreasing residence times 13 

within the landscape. For some parts of the study area, however, we found that projected 14 

P and T conditions may result in increasing N yields. In some watersheds on the coast of 15 

the Pacific Northwest and Northern California, for example, where projected increases in 16 

T are more moderate compared to projected increases in P, climatic conditions will favor 17 

increases in N yield. For these regions, our analysis suggests that projected changes in P 18 

and T, holding all other variables constant, would result in N yield increases of up to 15% 19 

in 2050 and 25% in 2090. Nitrogen pollution in these waterbodies, however, is less of a 20 

current concern compared to waterbodies like the Chesapeake Bay and Gulf of Mexico.  21 

This work contributes to a growing body of literature that explores the impact of 22 

climate change on N yield. The results of one of the first studies examining this for 23 
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watersheds in the Chesapeake Bay predicted increases in N yield with projected P 1 

changes, but did not consider the impacts due to projected changes in T (Howarth et al., 2 

2006). Recent studies using the SWAT model and GCM projections of P and T 3 

conducted for the Upper Mississippi River Basin show the uncertainty in projected N 4 

yield changes (Jha, et al., 2015; Panagopoulos et al., 2014). Our results, however, agree 5 

with those of Panagopoulos et al. (2014) and indicate that N yield to these waterbodies 6 

may decrease on average as a result of projected changes in P and T. 7 

Climate change will only be a part of the larger picture for determining future N 8 

yield and, ultimately, N concentrations in waterbodies. Many other factors will be at play 9 

including N inputs to watersheds, land use and cover changes, and the role of best 10 

management practices for N removal. Despite this complexity, the results of this study 11 

suggest that water managers, especially in regions identified in this study where future 12 

climatic conditions may increase N yield, take projected P and T long term trends into 13 

consideration when developing more detailed and localized models and plans for 14 

mitigating N pollution for impaired waterbodies. 15 

 16 

ACKNOWLEDGMENTS 17 

This work was supported by the National Science Foundation under the grant 18 

CBET-0846244. The authors acknowledge the Universities of South Carolina and 19 

Washington where the coauthors were previously employed when this research was 20 

initiated. The authors also wish to thank Richard Alexander from the USGS and the 21 

editor and reviewers of the manuscript for their constructive comments and suggestions 22 

for improving the manuscript.  23 



 25  

LITERATURE CITED 1 

Alam, M.J. and J.L. Goodall, 2012. Toward Disentangling the Effect of Hydrologic and 2 
Nitrogen Source Changes from 1992 to 2001 on Incremental Nitrogen Yield in the 3 
Contiguous United States. Water Resources Research 48. 4 
DOI:10.1029/2011WR010967. 5 

Alexander, R.B., P.J. Johnes, E.W. Boyer, and R.A. Smith, 2002. A Comparison of 6 
Models for Estimating the Riverine Export of Nitrogen from Large Watersheds. 7 
Biogeochemistry 57:295–339. DOI: 10.1023/A:1015752801818. 8 

Alexander, R.B., R.A. Smith, and G.E. Schwarz, 2000. Effect of Stream Channel Size on 9 
the Delivery of Nitrogen to the Gulf of Mexico. Nature 403:758–761. DOI: 10 
10.1038/35001562. 11 

Alexander, R.B., R.A. Smith, G.E. Schwarz, E.W. Boyer, J. V. Nolan, and J.W. 12 
Brakebill, 2008. Differences in Phosphorus and Nitrogen Delivery to The Gulf of 13 
Mexico from the Mississippi River Basin. Environmental Science & Technology 14 
42:822–830. DOI: 10.1021/es0716103. 15 

Baker, N. and H. Huang, 2014. A Comparative Study of Precipitation and Evaporation 16 
between CMIP3 and CMIP5 Climate Model Ensembles in Semiarid Regions. J. 17 
Climate 27:3731–3749. DOI:10.1175/JCLI-D-13-00398.1. 18 

Blois, J.L., J.W. Williams, M.C. Fitzpatrick, S.T. Jackson, and S. Ferrier, 2013. Space 19 
Can Substitute for Time in Predicting Climate-Change Effects on Biodiversity. 20 
Proceedings of the National Academy of Sciences 110:9374–9379. DOI: 21 
10.1073/pnas.1220228110. 22 

Brekke, L.D., M.D. Dettinger, E.P. Maurer, and M. Anderson, 2008. Significance of 23 
Model Credibility in Estimating Climate Projection Distributions for Regional 24 
Hydroclimatological Risk Assessments. Climatic Change 89:371–394. DOI: 25 
10.1007/s10584-007-9388-3.  26 

Brown, J.B., L.A. Sprague, and J.A. Dupree, 2011. Nutrient Sources and Transport in the 27 
Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs: 28 
Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the 29 
Effects of Irrigation and Reservoirs. JAWRA Journal of the American Water 30 
Resources Association 47:1034–1060. DOI: 10.1111/j.1752-1688.2011.00584.x. 31 

Collins, W.D., C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A. Carton, P. 32 
Chang, S.C. Doney, J.J. Hack, T.B. Henderson, J.T. Kiehl, W.G. Large, D.S. 33 
McKenna, B.D. Santer, and R.D. Smith, 2006. The Community Climate System 34 
Model Version 3 (CCSM3). Journal of Climate 19:2122–2143. DOI: 35 
10.1175/JCLI3761.1. 36 

Caroline A. Davis, A.S. Ward, A.J. Burgin, T.D. Loecke, D.A. Riveros-Iregui, D.J. 37 
Schnoebelen, C.L. Just, S.A. Thomas, L.J. Weber, and M.A. St. Clair, 2014. 38 
Antecedent Moisture Controls on Stream Nitrate Flux in an Agricultural Watershed. 39 
Journal of Environmental Quality 43:1494-1503. DOI: 10.2134/jeq2013.11.0438. 40 

Deacon, J.R., C.J. Lee, P.L. Toccalino, M.P. Warren, N.T. Baker, C.G. Crawford, R.G. 41 
Gilliom, and M.D. Woodside, 2015. Tracking Water-Quality of the Nation’s Rivers 42 
and Streams. U.S. Geological Survey Web page,  43 
<http://cida.usgs.gov/quality/rivers>. DOI:10.5066/F70G3H51. 44 

Delworth, T.L., A.J. Broccoli, A. Rosati, R.J. Stouffer, V. Balaji, J.A. Beesley, W.F. 45 



 26  

Cooke, K.W. Dixon, J. Dunne, K.A. Dunne, J.W. Durachta, K.L. Findell, P. Ginoux, 1 
A. Gnanadesikan, C.T. Gordon, S.M. Griffies, R. Gudgel, M.J. Harrison, I.M. Held, 2 
R.S. Hemler, L.W. Horowitz, S.A. Klein, T.R. Knutson, P.J. Kushner, A.R. 3 
Langenhorst, H.-C. Lee, S.-J. Lin, J. Lu, S.L. Malyshev, P.C.D. Milly, V. 4 
Ramaswamy, J. Russell, M.D. Schwarzkopf, E. Shevliakova, J.J. Sirutis, M.J. 5 
Spelman, W.F. Stern, M. Winton, A.T. Wittenberg, B. Wyman, F. Zeng, and R. 6 
Zhang, 2006. GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation 7 
and Simulation Characteristics. Journal of Climate 19:643–674. DOI: 8 
10.1175/JCLI3629.1. 9 

Diansky, N. and E. Volodin, 2002. Simulation of Present-Day Climate with a Coupled 10 
Atmosphere-Ocean General Circulation Model. Izvestiya Atmospheric and Oceanic 11 
Physics 38:732–747. 12 

Diaz, R.J., 2001. Overview of Hypoxia around the World. Journal of Environmental 13 
Quality 30:275. 14 

Diaz, R.J., and R. Rosenberg, 2008. Spreading Dead Zones and Consequences for Marine 15 
Ecosystems. Science 321:926–929. DOI: 10.1126/science.1156401. 16 

Donner, S.D., Christopher J. Kucharik, and Michael Oppenheimer, 2004. The Influence 17 
of Climate on in-Stream Removal of Nitrogen. Geophysical Research Letters 31. 18 
DOI:10.1029/2004GL020477. 19 

Donner, S.D. and C.J. Kucharik, 2003. Evaluating the Impacts of Land Management and 20 
Climate Variability on Crop Production and Nitrate Export across the Upper 21 
Mississippi Basin. Global Biogeochemical Cycles 17. DOI:10.1029/2001GB001808. 22 

Drewry, J.J., L.T.H. Newham, and R.S.B. Greene, 2011. Index Models to Evaluate the 23 
Risk of Phosphorus and Nitrogen Loss at Catchment Scales. Journal of 24 
Environmental Management 92:639–649. DOI: 10.1016/j.jenvman.2010.10.001. 25 

Environmental Protection Agency (U.S.), 2001. National Coastal Condition Report EPA-26 
620/R-01/005. Office of Research and Development/Office of Water, Washington, 27 
D.C. 28 

Flato, G.M. and G.J. Boer, 2001. Warming Asymmetry in Climate Change Simulations. 29 
Geophysical Research Letters 28:195–198. DOI: 10.1029/2000GL012121. 30 

Furevik, T., M. Bentsen, H. Drange, I.K.T. Kindem, N.G. Kvamst, and A. Sorteberg, 31 
2003. Description and Evaluation of the Bergen Climate Model: ARPEGE Coupled 32 
with MICOM. Climate Dynamics 21:27–51. DOI: 10.1007/s00382-003-0317-5. 33 

Goolsby, D.A., W.A. Battaglin, G.B. Lawrence, R.S. Artz, B.T. Aulenbach, R.P. Hooper, 34 
D.R. Keeney, and G.J. Stensland, 1999. Flux and Sources of Nutrients in the 35 
Mississippi–Atchafalaya River Basin. NOAA Coastal Ocean Program, Decision 36 
Analysis Series No. 17. National Oceanic and Atmospheric Administration, National 37 
Ocean Service, Coastal Ocean Program. 38 

Grizzetti, B., F. Bouraoui, and G. De Marsily, 2005. Modelling Nitrogen Pressure in 39 
River Basins: A Comparison between a Statistical Approach and the Physically-40 
Based SWAT Model. Physics and Chemistry of the Earth, Parts A/B/C 30:508–517. 41 
DOI: 10.1016/j.pce.2005.07.005. 42 

Gruber, N. and J. Galloway, 2008. An Earth-System Perspective of the Global Nitrogen 43 
Cycle. Nature 451:293-296. DOI:10.1038/nature06592. 44 

Hall R. O. Jr., Tank, J. L. Tank, Sobota D. J. Sobota, P. J. Mulholland, J. M. O'Brien, W. 45 
K. Dodds, J. R. Webster, H. M. Valett, B. J. Peterson, J. L. Meyer, W. H. 46 



 27  

McDowell, S. L. Johnson, S. K. Hamilton, N. B. Grimm, S. V. Gregory, C. N. 1 
Dahm, L. W. Cooper, L. R. Ashkenas, S. M. Thomas, R. W. Sheibley, J. D. Potter, 2 
B. R. Niederlehner, L. T. Johnson, A. M. Helton, C. M. Crenshaw, A. J. Burgin, M. 3 
J. Bernot, J. J. Beaulieu, C. P. Arangob, 2009. Nitrate Removal in Stream 4 
Ecosystems Measured by 15N Addition Experiments: Total Uptake. Limnology and 5 
Oceanography 54, DOI: 10.4319/lo.2009.54.3.0653. 6 

Han, H., J.D. Allan, and D. Scavia, 2009. Influence of Climate and Human Activities on 7 
the Relationship between Watershed Nitrogen Input and River Export. 8 
Environmental Science & Technology 43:1916–1922. DOI: 10.1021/es801985x. 9 

Hasumi, H. and S. Emori, 2004. K-1 Coupled Model (MIROC) Description. K-1 10 
Technical Report, 1. Center for Climate System Research, University of Tokyo. 11 
Tokyo. 12 

Hong, B., D. P. Swaney, and R. W. Howarth, 2013. Estimating Net Anthropogenic 13 
Nitrogen Inputs to US Watersheds: Comparison of Methodologies. Environmental 14 
Science & Technology 47.10: 5199-5207. DOI: 10.1021/es303437c. 15 

Hoos, A.B. and G. McMahon, 2009. Spatial Analysis of Instream Nitrogen Loads and 16 
Factors Controlling Nitrogen Delivery to Streams in the Southeastern United States 17 
Using Spatially Referenced Regression on Watershed Attributes (SPARROW) and 18 
Regional Classification Frameworks. Hydrological Processes 23:2275–2294. DOI: 19 
10.1002/hyp.7323. 20 

Howarth, R., D. Swaney, G. Billen, J. Garnier, B. Hong, C. Humborg, P. Johnes, C.-M. 21 
Mörth, and R. Marino, 2012. Nitrogen Fluxes from the Landscape Are Controlled by 22 
Net Anthropogenic Nitrogen Inputs and by Climate. Frontiers in Ecology and the 23 
Environment 10:37–43. DOI: 10.1890/100178. 24 

Howarth, R., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, R. Marino, G. Billen, 2011. 25 
Coupled Biogeochemical Cycles: Eutrophication and Hypoxia in Temperate 26 
Estuaries and Coastal Marine Ecosystems. Frontiers in Ecology and the Enironment 27 
9:18-26. DOI: 10.1890/100008. 28 

Howarth, R.W., D.P. Swaney, E.W. Boyer, R. Marino, N. Jaworski, and C. Goodale, 29 
2006. The Influence of Climate on Average Nitrogen Export from Large Watersheds 30 
in the Northeastern United States. Biogeochemistry 79:163–186. DOI: 31 
10.1007/s10533-006-9010-1. 32 

Howden, N.J.K., T.P. Burt, F. Worrall, and M.J. Whelan, 2011. Monitoring Fluvial Water 33 
Chemistry for Trend Detection: Hydrological Variability Masks Trends in Datasets 34 
Covering Fewer than 12 Years. Journal of Environmental Monitoring 13:514. DOI: 35 
10.1039/c0em00722f. 36 

Jha, M., P. Gassman, and Y. Panagopoulos, 2015. Regional Changes in Nitrate Loadings 37 
in the Upper Mississippi River Basin Under Predicted Mid-century Climate. 38 
Regional Environmental Change 15:449-460. DOI: 10.1007/s10113-013-0539-y. 39 

Jha, M.K., P.W. Gassman, S. Secchi, and J.G. Arnold, 2006. Upper Mississippi River 40 
Basin modeling system part 2: baseline simulation results. In: Singh V.P., Xu Y.J. 41 
(eds) Coastal Hydrology and Processes. Water Resources Publications, Highland 42 
Ranch, CO, ISBN: 1-887201-46-7. 43 

Jungclaus, J.H., N. Keenlyside, M. Botzet, H. Haak, J.-J. Luo, M. Latif, J. Marotzke, U. 44 
Mikolajewicz, and E. Roeckner, 2006. Ocean Circulation and Tropical Variability in 45 
the Coupled Model ECHAM5/MPI-OM. Journal of Climate 19:3952–3972. DOI: 46 



 28  

10.1175/JCLI3827.1. 1 
Kaushal, S.S., P.M. Groffman, L.E. Band, C.A. Shields, R.P. Morgan, M.A. Palmer, K.T. 2 

Belt, C.M. Swan, S.E.G. Findlay, and G.T. Fisher, 2008. Interaction between 3 
Urbanization and Climate Variability Amplifies Watershed Nitrate Export in 4 
Maryland. Environmental Science & Technology 42:5872–5878. DOI: 5 
10.1021/es800264f. 6 

Kemp, W.M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. 7 
Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. 8 
G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith, J. C. 9 
Stevenson, 2005. Eutrophication of Chesapeake Bay: Historical Trends 10 
and Ecological Interactions. Marine Ecology Progress Series 303:1-29. DOI: 11 
10.3354/meps303001. 12 

Legutke, S. and R. Ross, 1999. The Hamburg Atmosphere-Ocean Coupled Circulation 13 
Model ECHO-G. Technical Report. German Climate Computer Centre (DKRZ). 14 
Hamburg, Germany. 15 

Lim, K.J., B.A. Engel, Z. Tang, S. Muthukrishnan, J. Choi, and K. Kim, 2006. Effects of 16 
Calibration on L-THIA GIS Runoff and Pollutant Estimation. Journal of 17 
Environmental Management 78:35–43. DOI: 10.1016/j.jenvman.2005.03.014. 18 

Marti, O., P. Braconnot, J. Bellier, R. Benshila, S. Bony, P. Brockmann, P. Cadule, A. 19 
Caubel, S. Denvil, J.-L. Dufresne, L. Fairhead, M.-A. Filiberti, M.-A. Foujols, T.T. 20 
Fichefet, P. Friedlingstein, H. Gosse, J.-Y. Grandpeix, F.F. Hourdin, G. Krinner, C. 21 
Lévy, G. Madec, I. Musat, N. de Noblet, J. Polcher, and C. Talandier, 2006. The 22 
New IPSL Climate System Model: IPSL-CM4. Institut Pierre-Simon Laplace 23 
(IPSL). 24 

Maurer, E.P., L. Brekke, T. Pruitt, and P.B. Duffy, 2007. Fine-Resolution Climate 25 
Projections Enhance Regional Climate Change Impact Studies. Eos, Transactions 26 
American Geophysical Union 88:504–504. 27 

McIsaac, G.F., M.B. David, and G.Z. Gertner, 2016. Illinois River Nitrate-Nitrogen 28 
Concentrations and Loads: Long-term Variation and Association with Watershed 29 
Nitrogen Inputs. Journal of Environmental Quality 45:1268–1275. 30 
DOI:10.2134/jeq2015.10.0531. 31 

Meehl, G.A., C. Covey, K.E. Taylor, T. Delworth, R.J. Stouffer, M. Latif, B. McAvaney, 32 
and J.F.B. Mitchell, 2007. THE WCRP CMIP3 Multimodel Dataset: A New Era in 33 
Climate Change Research. Bulletin of the American Meteorological Society 34 
88:1383–1394. DOI: 10.1175/BAMS-88-9-1383. 35 

Moore, R.B., C.M. Johnston, R.A. Smith, and B. Milstead, 2011. Source and Delivery of 36 
Nutrients to Receiving Waters in the Northeastern and Mid-Atlantic Regions of the 37 
United States1: Source and Delivery of Nutrients to Receiving Waters in the 38 
Northeastern and Mid-Atlantic Regions of the United States. JAWRA Journal of the 39 
American Water Resources Association 47:965–990. 40 

Mulholland P. J., R. O. Hall, D. J. Sobota, W. K. Dodds, E. G. Findlay Stuart, N. B. 41 
Grimm, S. K. Hamilton, W. H. McDowell, J. M. O'Brien, J. L. Tank, L. R. 42 
Ashkenas, L. W. Cooper, C. N. Dahm, S. V. Gregory, S. L. Johnson, J. L. Meyer, B. 43 
J. Peterson, G. C. Poole, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, 44 
M. J. Bernot, A. J. Burgin, C. L. Crenshaw, A. M. Helton, L. T. Johnson, B. R. 45 
Niederlehner, J. D. Potter, R. W. Sheibley, S. M. Thomasn, 2009. Nitrate Removal 46 



 29  

in Stream Ecosystems Measured by 15N Addition Experiments: Denitrification. 1 
Limnology and Oceanography 54. DOI: 10.4319/lo.2009.54.3.0666. 2 

Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, 3 
M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood, 4 
2010. Potential Climate-Change Impacts on the Chesapeake Bay. Estuarine, Coastal 5 
and Shelf Science 86:1–20. DOI: 10.1016/j.ecss.2009.09.026. 6 

Nangia, V., D.J. Mulla, P.H. Gowda, 2010. Precipitation Changes Impact Stream 7 
Discharge, Nitrate-Nitrogen Load More Than Agricultural Management Changes. 8 
Journal of Environmental Quality 39:2063-2071. DOI: 10.2134/jeq2010.0105. 9 

National Atmospheric Deposition Program (NADP), 2010. National Atmospheric 10 
Deposition Program (NRSP-3). Natl. Atmos. Depos. Prog. Prog. Off., Ill. State 11 
Water Surv., Champaign. 12 

National Research Council (U.S.), 2000. Clean Coastal Waters: Understanding and 13 
Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, 14 
D.C. 15 

Nolan, J. V., J. W.Brakebill, R.B. Alexander, and G.E. Schwarz, 2002. Enhanced River 16 
Reach File 2. U.S. Geological Survey Open-File Report 02-40. Reston, Virginia. 17 

Panagopoulos, Y. P.W. Gassman, R. W. Arritt, D.E. Herzmann, T.D. Campbell, M. K. 18 
Jha, C. L. Kling, R. Srinivasan, M. White, J. G. Arnold, 2014. Surface water quality 19 
and cropping systems sustainability under a changing climate in the Upper 20 
Mississippi River Basin. Journal of Soil and Water Conservation 69:483-494. DOI: 21 
10.2489/jswc.69.6.483. 22 

Paul, M.J. and J.L. Meyer, 2001. Streams in the Urban Landscape. Annual Review of 23 
Ecology and Systematics 32:333–365.Pickett, S.T.A., 1989. Space-for-Time 24 
Substitution as an Alternative to Long-Term Studies. Long-Term Studies in 25 
Ecology. Springer New York, New York, NY, pp. 110–135. 26 

Pierce, D.W., T.P. Barnett, B.D. Santer, and P.J. Gleckler, 2009. Selecting Global 27 
Climate Models for Regional Climate Change Studies. Proceedings of the National 28 
Academy of Sciences 106:8441–8446. 29 

Qian, S.S., K.H. Reckhow, J. Zhai, and G. McMahon, 2005. Nonlinear Regression 30 
Modeling of Nutrient Loads in Streams: A Bayesian Approach. Water Resources 31 
Research 41. DOI:10.1029/2005WR003986. DOI: 10.1029/2005WR003986.Rebich, 32 
R.A., N.A. Houston, S. V. Mize, D.K. Pearson, P.B. Ging, and C. Evan Hornig, 33 
2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico from 34 
Streams in the South-Central United States1: Sources and Delivery of Nutrients to 35 
the Northwestern Gulf of Mexico From Streams in the South-Central United States. 36 
JAWRA Journal of the American Water Resources Association 47:1061–1086. 37 

Reichler, T. and J. Kim, 2008. How Well Do Coupled Models Simulate Today’s 38 
Climate? Bulletin of the American Meteorological Society 89:303–311. 39 

Robertson, D.M. and D.A. Saad, 2011. Nutrient Inputs to the Laurentian Great Lakes by 40 
Source and Watershed Estimated Using SPARROW Watershed Models: Nutrient 41 
Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using 42 
SPARROW Watershed Models. JAWRA Journal of the American Water Resources 43 
Association 47:1011–1033. DOI: 10.1111/j.1752-1688.2011.00574.x. 44 

Ruddy, B., Lorenz, D., and Mueller, D., 2006. County-Level Estimates of Nutrient Inputs 45 
to the Land Surface of the Conterminous United States. U.S. Geological Survey 46 



 30  

Open-File Report 1982-2001. Reston, Virginia. 1 
Russell, G.L., J.R. Miller, D. Rind, R.A. Ruedy, G.A. Schmidt, and S. Sheth, 2000. 2 

Comparison of Model and Observed Regional Temperature Changes during the Past 3 
40 Years. Journal of Geophysical Research 105:14891. DOI: 4 
10.1029/2000JD900156. 5 

Salas-Mélia, D., F. Chauvin, M. Déqué, H. Douville, J.F. Gueremy, P. Marquet, S. 6 
Planton, J.F. Royer, and S. Tyteca, 2005. Description and Validation of the CNRM-7 
CM3 Global Coupled Model. CNRM Working Note 103. 8 

Schaefer, S.C. and M. Alber, 2007. Temperature Controls a Latitudinal Gradient in the 9 
Proportion of Watershed Nitrogen Exported to Coastal Ecosystems. 10 
Biogeochemistry 85:333–346. DOI: 10.1007/s10533-007-9144-9. 11 

Schwarz, G.E., A.B. Hoos, R.B. Alexander, and R.A. Smith, 2006. The SPARROW 12 
Surface Water-Quality Model: Theory, Application and User Documentation. U.S. 13 
Geological Survey Techniques and Methods. Section B, Book 6. U.S. Geological 14 
Survey, Reston, Virginia. 15 

Seaber, P.R., F.P. Kapinos, and G.L. Knapp, 1987. Hydrologic Unit Maps. United States 16 
Geological Survey Water-Supply Paper 2294. 17 

Seitzinger, S.P., 1988. Denitrification in Freshwater and Coastal Marine Ecosystems: 18 
Ecological and Geochemical Significance. Limnology and Oceanography 33:702–19 
724. 20 

Singa, E. and A. Michalak, 2016. Precipitation Dominates Interannual Variability of 21 
Riverine Nitrogen Loading across the Continental United States. Environmental 22 
Science and Technology 50:12874-12884. DOI: 10.1021/acs.est.6b04455. 23 

Smith, R.A., G.E. Schwarz, and R.B. Alexander, 1997. Regional Interpretation of Water-24 
Quality Monitoring Data. Water Resources Research 33:2781–2798. 25 

Smith, R.A., G.E. Schwarz, J.W. Brakebill, A.B. Hoos, R.B. Moore, J. Shih, A.W. Nolin, 26 
M. Macauley, and R.B. Alexander, 2013. Seasonally-Dynamic SPARROW 27 
Modeling of Nitrogen Flux Using Earth Observation Data. AGU Fall Meeting 28 
Abstracts:G383. 29 

Sobota, D.J., J.A. Harrison, and R.A. Dahlgren, 2009. Influences of Climate, 30 
Hydrology, and Land Use on Input and Export of Nitrogen in California 31 
Watersheds. Biogeochemistry 94: 43. DOI:10.1007/s10533-009-9307-y. 32 

Sun, L., K.E. Kunkel, L.E. Stevens, A. Buddenberg, J.G. Dobson, and D.R. Easterling, 33 
2015. Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United 34 
States: Differences, Similarities, and Implications for the U.S. National Climate 35 
Assessment. NOAA Technical Report NESDIS 114. DOI:10.7289/V5RB72KG. 36 

U.S. Geological Survey, 2004. HYDRO1k Elevation Derivative Database. Earth 37 
Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 38 

Van Meter, K.J., N.B. Basu, J.J. Veenstra, and C.L. Burras, 2016. The Nitrogen Legacy: 39 
Emerging Evidence of Nitrogen Accumulation in Anthropogenic Landscapes. 40 
Environmental Research Letters 11 035014. DOI:10.1088/1748-9326/11/3/035014. 41 

Veraart, A.J., J.J.M. de Klein, and M. Scheffer, 2011. Warming Can Boost 42 
Denitrification Disproportionately Due to Altered Oxygen Dynamics L. Stal 43 
(Editor). PLoS ONE 6:e18508. DOI: 10.1371/journal.pone.0018508. 44 

Vitousek, P.M., J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, 45 
W.H. Schlesinger, and D.G. Tilman, 1997. Human Alteration of the Global Nitrogen 46 



 31  

Cycle: Sources and Consequences. Ecological Applications 7:737–750. DOI: 1 
10.2307/2269431. 2 

Wan, R., S. Cai, H. Li, G. Yang, Z. Li, and X. Nie, 2014. Inferring Land Use and Land 3 
Cover Impact on Stream Water Quality Using a Bayesian Hierarchical Modeling 4 
Approach in the Xitiaoxi River Watershed, China. Journal of Environmental 5 
Management 133:1–11. DOI: 10.1016/j.jenvman.2013.11.035. 6 

Wise, D.R. and H.M. Johnson, 2011. Surface-Water Nutrient Conditions and Sources in 7 
the United States Pacific Northwest: Surface-Water Nutrient Conditions and Sources 8 
in the United States Pacific Northwest. JAWRA Journal of the American Water 9 
Resources Association 47:1110–1135. DOI: 10.1111/j.1752-1688.2011.00580.x. 10 

Ye, L. and N.B. Grimm, 2013. Modelling Potential Impacts of Climate Change on Water 11 
and Nitrate Export from a Mid-Sized, Semiarid Watershed in the US Southwest. 12 
Climatic Change 120:419–431. DOI: 10.1007/s10584-013-0827-z. 13 

Yukimoto, S., A. Noda, A. Kitoh, M. Sugi, Y. Kitamura, M. Hosaka, K. Shibata, S. 14 
Maeda, and T. Uchiyama, 2001. The New Meteorological Research Institute 15 
Coupled GCM(MRI-CGCM2). Model Climate and Variability. Papers in 16 
Meteorology and Geophysics 51:47–88. 17 

Zaehle, S. and A.D. Friend, 2010. Carbon and Nitrogen Cycle Dynamics in the O-CN 18 
Land Surface Model: 1. Model Description, Site-Scale Evaluation, and Sensitivity to 19 
Parameter Estimates. Global Biogeochemical Cycles 24. 20 
DOI:10.1029/2009GB003521. 21 

22 



 32  

Table 1. The 14 General Climate Models (GCMs) used for P and T projections. 1 

Climate Models Institutions, sponsoring agency, country References 
BCCR-BCM 2.0 Bjerknes Center for Climate Research (Furevik et al., 

2003) 
CGCM3.1 (T47) Canadian Centre for Climate Modeling & Analysis (Flato and 

Boer, 2001) 
CNRM-CM3 Météo-France / Centre National de Recherches Météorologiques, 

France 
(Salas-Mélia et 
al., 2005) 

GFDL-CM2.0 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics 
Laboratory, USA 

(Delworth et 
al., 2006) 

GFDL-CM2.1 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics 
Laboratory, USA 

(Delworth et 
al., 2006) 

GISS-ER NASA / Goddard Institute for Space Studies, USA (Russell et al., 
2000) 

INM-CM3.0 Institute for Numerical Mathematics, Russia (Diansky and 
Volodin, 2002) 

IPSL-CM4 Institut Pierre Simon Laplace, France (Marti et al., 
2006) 

MIROC3.2 (medres) Center for Climate System Research (The University of Tokyo), 
National Institute for Environmental Studies, an Frontier 
Research Center for Global Change (JAMSTEC), Japan 

(Hasumi and 
Emori, 2004) 

ECHO-G Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA 

(Legutke and 
Ross, 1999) 

ECHAM5/MPI-OM Max Planck Institute for Meteorology, Germany (Jungclaus et 
al., 2006) 

MRI-CGCM2.3.2 Meteorological Research Institute, Japan (Yukimoto et 
al., 2001) 

CCSM3 National Center for Atmospheric Research, USA (Collins et al., 
2006) 

UKMO-HadCM3 Hadley Centre for Climate Prediction and Research / Met Office, 
UK 

(Collins et al., 
2006) 

2 
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Table 2. Calibration results for the A2 and B1 scenarios of the base year (1992) SPARROW model. Provided numbers are the low and 1 

high calibration results across the 14 GCM output data sets. 2 

Nonlinear Least Squares Calibration  A2 Scenarios  B1 Scenarios 
Model Parameters Coefficient 

Units 
 Coefficient 

(Mean) 
Standard 
Error p-Value  Coefficient 

(Mean) 
Standard 
Error p-Value 

Nitrogen Source Variables, β          
Population Related Sources kg person-1 yr-1  3.132∼3.354 0.746∼0.785 <0.05  3.126∼3.339 0.751∼0.785 <0.05 
Atmospheric Deposition dimensionless  0.562∼0.680 0.146∼0.153 <0.05  0.560∼0.670 0.146∼0.153 <0.05 
Fertilizer Application dimensionless  0.217∼0.230 0.044∼0.046 <0.05  0.217∼0.230 0.044∼0.046 <0.05 
Livestock Waste Production dimensionless  0.041∼0.051 0.059∼0.063 0.401∼0.501  0.041∼0.051 0.060∼0.063 0.402∼0.495 
Non Agricultural Land kg km-1 yr-1  194.8∼232.0 41.98∼45.47 <0.05  199.0∼232.0 42.27∼45.48 <0.05 
Land-Water Delivery Variables, αʹ 
Soil Permeability in hr-1  -0.089∼-0.079 0.017∼0.017 <0.05  -0.090∼-0.080 0.017∼0.017 <0.05 
Drainage Density km−1  0.913∼1.158 0.785∼0.807 0.143∼0.258  0.870∼1.155 0.783∼0.812 0.144∼0.285 
Mean Annual Air Temp. (T) ◦C  -0.064∼-0.057 0.008∼0.008 <0.05  -0.063∼-0.058 0.008∼0.008 <0.05 
Precipitation (P) 102 mm  0.009∼0.010 0.001∼0.001 <0.05  0.009∼0.010 0.001∼0.001 <0.05 
Instream Losses, κʹ          
κ1 (Q ≤ 28.3 m3 /s) day−1  0.216∼0.229 0.028∼0.029 <0.05  0.215∼0.229 0.028∼0.029 <0.05 
κ2 (28.3 m3 /s < Q < 283 m3 /s) day−1  0.216∼0.229 0.023∼0.024 <0.05  0.047∼0.052 0.023∼0.024 <0.05 
Reservoir Attenuation, κr m yr-1  6.885∼7.112 1.834∼1.890 <0.05  6.896∼7.114 1.836∼1.890 <0.05 
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Table 3. Names of the hydrologic regions (2-digit HUC) for the contiguous United States 1 

(Seaber et al., 1987). A map of the basins is provided in Figure 8. 2 

Region No Region Name  Region No Region Name 

Region 01 New England  Region 10 Missouri 
Region 02 Mid-Atlantic  Region 11 Arkansas-White-Red 
Region 03 South Atlantic-Gulf  Region 12 Texas-Gulf 
Region 04 Great Lakes  Region 13 Rio Grande 
Region 05 Ohio  Region 14 Upper Colorado 
Region 06 Tennessee  Region 15 Lower Colorado 
Region 07 Upper Mississippi  Region 16 Great Basin 
Region 08 Lower Mississippi  Region 17 Pacific Northwest 
Region 09 Souris-Red-Rainy  Region 18 California 
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Figure 1. T (º C) predictions over different time periods for the contiguous United States 1 

for the A2 and B1 emission scenarios. Here 1992, 2030, 2050 and 2090 refer to the 2 

ensemble average of 20 years T data around each year (e.g., 2030 refers to the ensemble 3 

average of 2020-2039) from the 14 GCMs used in this study. 4 

 5 

Figure 2. P (mm) predictions over different time periods for the contiguous United States 6 

for the A2 and B1 emission scenarios. Here 1992, 2030, 2050 and 2090 refer to the 7 

ensemble average of 20 years P data around each year (e.g., 2030 refers to the ensemble 8 

average of 2020-2039) from the 14 GCMs used in this study. 9 

 10 

Figure 3. Spatial patterns in total N yield (kg/ha yr) for baseline conditions. The estimates 11 

were produced using the SPARROW model and GCM output averaged across an 12 

ensemble of 14 models for the A2 (high) and B1 (low) emission scenarios. 13 

 14 

Figure 4. Evaluation of 1992 calibrated model performance for predicted log of flux 15 

versus actual log of flux of TN. The r2 and RMSE values compare model performance 16 

with observed water quality conditions from the 354 available monitoring stations. 17 

 18 

Figure 5. Evaluation of calibrated model applied to 2001 dataset. The r2 value compares 19 

model performance with observed water quality conditions from the 122 available 20 

monitoring stations. 21 

 22 
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Figure 6. Incremental N yield change (%) predictions for different time periods under the 1 

A2 and B1 emission scenarios over the contiguous United States. This is the average of 2 

the SPARROW model outputs from each of the 14 different GCM predictions for future 3 

P and T conditions. 4 

 5 

Figure 7. Regional changes in incremental N yield (kg/ha yr) over different time periods 6 

from 14 GCMs with A2 (high) and B1 (low) emission scenarios. The regions consist of 7 

major river basins and are represented by a 2-digit Hydrologic Unit Code (HUC). 8 

 9 

Figure 8. Hydrologic Unit Code (HUC) for the 2-digit HUC boundaries in the contiguous 10 

United States (USGS, 2013). These regions contain the drainage area of a major river or a 11 

series of rivers. The average area of these regions is 177,560 mi2. The SPARROW model 12 

output was summarized and presented at this regional level to compare the model outputs 13 

at the major river basin scale. 14 

 15 

Figure 9. N yield change (%) for given changes in T (ºC) and P (mm) within each level-8 16 

watershed using the 14 GCMs and the A2 (high) or B1 (low) emission scenarios. 17 
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